22.3 实际问题与一元二次方程(1)教案(人教新课标九年级上)doc--初中数学 .doc
《22.3 实际问题与一元二次方程(1)教案(人教新课标九年级上)doc--初中数学 .doc》由会员分享,可在线阅读,更多相关《22.3 实际问题与一元二次方程(1)教案(人教新课标九年级上)doc--初中数学 .doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费在线组卷 课件教案下载 无需注册和点数22.3 实际问题与一元二次方程(1) 教学内容 由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题 教学目标 掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题 通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题 重难点关键 1重点:用“倍数关系”建立数学模型 2难点与关键:用“倍数关系”建立数学模型 教学过程 一、复习引入 (学生活动)问题1:列方程解应用题下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):星期一二三四
2、五 甲12元12.5元12.9元12.45元12.75元 乙13.5元13.3元13.9元13.4元13.75元 某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股? 老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式 解:设这人持有的
3、甲、乙股票各x、y张 则 解得 答:(略) 二、探索新知 上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题 (学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少? 老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)
4、x=(1+x)2,那么就很容易从第一季度总台数列出等式 解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2=3.31 去括号:1+1+x+1+2x+x2=3.31 整理,得:x2+3x-0.31=0 解得:x=10% 答:(略) 以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型 例1某电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率 分析:设这个增长
5、率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系 解:设平均增长率为x 则200+200(1+x)+200(1+x)2=950 整理,得:x2+3x-1.75=0 解得:x=50% 答:所求的增长率为50% 三、巩固练习 (1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米? (2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为_ 四、应用拓展 例2某人将2000元人民币按一年定期存入银行,到期后支取
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 22.3 实际问题与一元二次方程1教案人教新课标九年级上doc-初中数学 实际问题 一元 二次方程 教案 新课 九年级 doc 初中 数学
限制150内