2009届高三第二轮数学专题复习教案不等式doc--高中数学 .doc
《2009届高三第二轮数学专题复习教案不等式doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2009届高三第二轮数学专题复习教案不等式doc--高中数学 .doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网2009届高三数学二轮专题复习教案不等式一、本章知识结构:无理不等式不 等 式不等式的性质均值不等式不等式的解法比较法综合法分析法放缩法反证法换元法函数法导数法不等式的证明有理不等式超越不等式绝对值不等式一元一次不等式(组)一元二次不等式(组)整式高次不等式(组)分式高次不等式(组)指数不等式(组)对数不等式(组)三角不等式(组)不等式的应用函数的定义域、值域与单调性取值范围问题最值问题方程根的分布数列不等式、函数不等式的证明实际应用问题线性规划二、重点知识回顾不等式的性质是证明不等式和解不等式的基础。不等式的基本性质有:对称性:abbb,bc,则ac;可加性:aba+cb
2、+c;可乘性:ab,当c0时,acbc;当c0时,acb,cd,则a+cb+d;异向相减:,.正数同向相乘:若ab0,cd0,则acbd。(4)乘方法则:若ab0,nN+,则;(5)开方法则:若ab0,nN+,则;(6)倒数法则:若ab0,ab,则。 2、基本不等式(或均值不等式);利用完全平方式的性质,可得a2+b22ab(a,bR),该不等式可推广为a2+b22|ab|;或变形为|ab|;当a,b0时,a+b或ab.3、不等式的证明:不等式证明的常用方法:比较法,公式法,分析法,反证法,换元法,放缩法;在不等式证明过程中,应注重与不等式的运算性质联合使用;证明不等式的过程中,放大或缩小应适
3、度。不等式的解法:解不等式是寻找使不等式成立的充要条件,因此在解不等式过程中应使每一步的变形都要恒等。一元二次不等式(组)是解不等式的基础,一元二次不等式是解不等式的基本题型。一元二次不等式与相应的函数,方程的联系求一般的一元二次不等式或的解集,要结合的根及二次函数图象确定解集对于一元二次方程,设,它的解按照可分为三种情况相应地,二次函数的图象与轴的位置关系也分为三种情况因此,我们分三种情况讨论对应的一元二次不等式的解集,列表如下:含参数的不等式应适当分类讨论。5、不等式的应用相当广泛,如求函数的定义域,值域,研究函数单调性等。在解决问题过程中,应当善于发现具体问题背景下的不等式模型。用基本不
4、等式求分式函数及多元函数最值是求函数最值的初等数学方法之一。研究不等式结合函数思想,数形结合思想,等价变换思想等。6、线性规划问题的解题方法和步骤解决简单线性规划问题的方法是图解法,即借助直线(线性目标函数看作斜率确定的一族平行直线)与平面区域(可行域)有交点时,直线在y轴上的截距的最大值或最小值求解。它的步骤如下:(1)设出未知数,确定目标函数。(2)确定线性约束条件,并在直角坐标系中画出对应的平面区域,即可行域。(3)由目标函数zaxby变形为yx,所以,求z的最值可看成是求直线yx在y轴上截距的最值(其中a、b是常数,z随x,y的变化而变化)。(4)作平行线:将直线axby0平移(即作a
5、xby0的平行线),使直线与可行域有交点,且观察在可行域中使最大(或最小)时所经过的点,求出该点的坐标。(5)求出最优解:将(4)中求出的坐标代入目标函数,从而求出z的最大(或最小)值。7、绝对值不等式(1)xa(a0)的解集为:xaxa;xa(a0)的解集为:xxa或xa。(2)三、考点剖析考点一:不等关系与不等式【内容解读】通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等(组)的现实背景;了解不等式的有关概念及其分类,掌握不等式的性质及其应用。养成推理必有依据的良好习惯,不要想当然,不要错漏不等式性质使用的条件,如,中,注意后面大于的条件,出题者往往就在这里出一些似是
6、而非的题目来迷惑考生【命题规律】高考中,对本节内容的考查,主要放在不等式的性质上,题型多为选择题或填空题,属容易题。例、(2008广东文)设,若,则下列不等式中正确的是( )A B. C. D. 解:由知, ,所以,故选C.点评:本题考查绝对值的概念和绝对值的性质,如果用特殊值法也能求解。例2、(2007上海理科)已知为非零实数,且,则下列命题成立的是( )A、 B、 C、 D、解:取a3,b,由()()()都错,故(C)。点评:特殊值法是解选择题的一种技巧,在应试时要时刻牢记有这么一种方法。这晨a,b没有说明符号,注意不要错用性质。考点二:一元二次不等式及其解法【内容解读】会从实际情况中抽象
7、出一元二次不等式的模型,了解一元二次不等式与函数方程的联系;会解一元二次不等式,会由一元二次不等式的解求原不等式;用同解变形解不等式,分类解不等式;对解含参的不等式,对参数进行讨论;注意数形结合,会通过函数图象来解不等式(1)用图象法解一元二次不等式教材中在研究一元二次不等式的解法时,是结合二次函数的图象,利用对应的一元二次方程的解得出的,所以我们学习一元二次不等式的解法时,应从二次函数图象出发加以理解(2)弄清一元二次方程、二次函数、一元二次不等式三者之间的关系二次函数是研究自变量x与函数值y之间的对应关系,一元二次方程的解就是自变量为何值时,函数值的这一情况;而一元二次不等式的解集是自变量
8、变化过程中,何时函数值()或()的情况一元二次方程的解对研究二次函数的函数值的变化是十分重要的,因为方程的两根是函数值由正变负或由负变为正的分界点,也是不等式解的区间的端点学习过程中,只有搞清三者之间的联系,才能正确认识与理解一元二次不等式的解法【命题规律】高考命题中,对一元二次不等式解法的考查,若以选择题、填空题出现,则会对不等式直接求解,或经常地与集合、充要条件相结合,难度不大。若以解答题出现,一般会与参数有关,或对参数分类讨论,或求参数范围,难度以中档题为主。例、(2007湖南)不等式的解集是( )ABCD解:原不等式可化为x2x,即x(x),所以x或x,选()点评:这是一道很简单的一元
9、二次不等式的试题,只要知道它的解法即可例、(2007福建)“”是“”的什么条件( )A充分而不必要 B必要而不充分 C充要 D既不充分也不必要解:由|x2,得:2x2,由得:2x3,2x2成立,则2x3一定成立,反之则不一定成立,所以,选()。点评:本题是不等式与充分必要条件结合的综合考查题,先解出不等式的解集来,再由充分必要条件的判断方法可得。例、(2008江西文)不等式的解集为 解:原不等式变为,由指数函数的增减性,得:,所以填:。点评:不等式与指数函数交汇、不等式与对数函数交汇、不等式与数列交汇是经常考查的内容,应加强训练。例6、已知集合,若,求实数的取值范围解:设,它的图象是一条开口向
10、上的抛物线(1)若,满足条件,此时,即,解得;(2)若,设抛物线与轴交点的横坐标为,且,欲使,应有,结合二次函数的图象,得即解得综上可知的取值范围是点评:本题是一元二次不等式与集合结合的综合题,考查含参数一元二次不等式的解法,注意分类讨论思想的应用,分类时做到不遗漏。考点三:简单的线性规划【内容解读】了解二元一次不等式(组)表示的平面区域和线性规划的意义;了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用线性规划的方法解决一些简单的实际问题,以提高解决实际问题的能力生产实际中有许多问题都可以归纳为线性规划问题在线性规划的实际问题中,主要掌握两种
11、类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源,能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样安排,能使完成这项任务耗费的人力、物力资源最小【命题规律】线性规划问题时多以选择、填空题的形式出现,题型以容易题、中档题为主,考查平面区域的面积、最优解的问题;随着课改的深入,近年来,以解答题的形式来考查的试题也时有出现,考查学生解决实际问题的能力。例7、(2008安徽文)若为不等式组表示的平面区域,则当从2连续变化到1时,动直线 扫过中的那部分区域的面积为 ( )AB1 CD5解:如图知区域的面积是OAB去掉一个小直角三角形。(阴影部分面积比1大,比小,故选C,不需要算出
12、来) 点评:给出不等式组,画出平面区域,求平面区域的面积的问题是经常考查的试题之一,如果区域是不规节图形,将它分割成规节图形分别求它的面积即可。例8、(2008广东理)若变量x,y满足,则z=3x+2y的最大值是 ( ) A90 B. 80 C. 70 D. 40解:做出可行域如图所示.目标函数化为:y,令z,画y,及其平行线,如右图,当它经过两直线的交点时,取得取大值。解方程组,得.所以,故答C.点评:求最优解,画出可行域,将目标函数化为斜截式,再令z,画它的平行线,看y轴上的截距的最值,就是最优解。例9、(2007山东)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2009届高三第二轮数学专题复习教案不等式doc-高中数学 2009 届高三第 二轮 数学 专题 复习 教案 不等式 doc 高中数学
限制150内