2009-2010年高考数学一轮复习精品资料第15讲轨迹方程doc--高中数学 .doc
《2009-2010年高考数学一轮复习精品资料第15讲轨迹方程doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2009-2010年高考数学一轮复习精品资料第15讲轨迹方程doc--高中数学 .doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网高考数学一轮复习第15讲:轨迹方程一、复习目标、熟悉求曲线方程的两类问题:一是动点变动的根本原因,二是动点变动的约束条件、熟练掌握求曲线方程的常用方法:定义法、代入法、待定系数法、参数法等,并能灵活应用。二课前热身1到顶点和定直线的距离之比为的动点的轨迹方程是 2直线与椭圆交于P、Q两点,已知过定点(1,0),则弦PQ中点的轨迹方程是 3已知点P是双曲线上任一点,过P作轴的垂线,垂足为Q,则PQ中点M的轨迹方程是 4在中,已知,且成等差数列,则C点轨迹方程为 三例题探究lA例1设动直线垂直于轴,且与椭圆交于两点,P是上满足的点,求点P的轨迹方程。OyxB例2如图,在中,平方
2、单位,动点P在曲线E上运动,若曲线E过点C且满足的值为常数。(1) 求曲线E的方程;C(2) 设直线的斜率为1,若直线与曲线E有两个不同的交点Q、R,求线段QR的中点M的轨迹方程。AyxOB例3如图所示,过椭圆E:上任一点P,作右准线的垂线PH,垂足为H。延长PH到Q,使HQ=(1)当P点在E上运动时,求点Q的轨迹G的方程;(2)当取何值时,轨迹G是焦点在平行于轴的直线上的椭圆?证明这些焦点都在同一个椭圆上,并写出椭圆的方程;(3)当取何值时,轨迹G是一个圆?判断这个圆与椭圆的右准线的位置关系。OxPyHQl例4设椭圆方程为,过点的直线交椭圆于点A、B,O是坐标原点,点P满足点N的坐标为,当绕
3、点M旋转时,求:(1)动点P的轨迹方程;(2)的最小值与最大值。四方法点拨例1用直接法:若曲线上的动点满足的条件是一些几何量的等量关系,则只需直接把这种关系“翻译”成关于动点的坐标的方程。经化简所得同解的最简方程,即为所求轨迹方程。其一般步骤为:建系设点列式代换化简检验。例2用圆锥曲线的定义求方程。如果题目中的几何条件能够满足圆、椭圆、双曲线,抛物线的第一、二定义,则直接利用曲线定义写出其轨迹方程。例3求曲线的轨迹方程是解析几何的两个基本问题之一。求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为变量间的关系。在确定了轨迹方程之后,有时需要对方程中的参数
4、进行讨论,因为参数取值的变化会使方程表示不同的曲线,会使其与其他曲线的位置关系不同,会引起另外某些变量取值范围的变化。例4本题是运用参数法求的轨迹。当动点P的坐标之间的直接关系不易建立时,可适当地选取中间变量,并用表示动点P的坐标,从而得到动点轨迹的参数方程,消去参数,便可得到动点P的轨迹普通方程。其中应注意方程的等价性,即由的范围确定出范围。冲刺强化训练(15)1.若点M(x,y)满足,则点M的轨迹是()A.圆B.椭圆C.双曲线D抛物线.2.点M为抛物线上的一个动点,连结原点O与动点M,以OM为边作一个正方形MNPO,则动点P的轨迹方程为()A.B. C. D. 3.方程化简的结果是()A.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2009-2010年高考数学一轮复习精品资料第15讲轨迹方程doc-高中数学 2009 2010 年高 数学 一轮 复习 精品 资料 15 轨迹 方程 doc 高中数学
限制150内