2010年高考数学一轮复习精品学案(人教版a版)平面向量的数量积及应用doc--高中数学 .doc
《2010年高考数学一轮复习精品学案(人教版a版)平面向量的数量积及应用doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010年高考数学一轮复习精品学案(人教版a版)平面向量的数量积及应用doc--高中数学 .doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网2010年高考数学一轮复习精品学案(人教版A版)平面向量的数量积及应用一【课标要求】1平面向量的数量积通过物理中功等实例,理解平面向量数量积的含义及其物理意义;体会平面向量的数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。2向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。二【命题走向】本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及
2、应用。重点体会向量为代数几何的结合体,此类题难度不大,分值59分。平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主.预测2010年高考:(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目.(2)一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;三【要点精讲】1向量的数量积(1)两个非零向量的夹角已知非零向量a与a,作,则AA()叫与的夹角;说明:(1)当时,与同向;(2)当时,与反向;(3)当时,与垂直,记;(4)注意在两向量的夹角定义,两向量必须是同起点的,范围0q180
3、。C(2)数量积的概念已知两个非零向量与,它们的夹角为,则=cos叫做与的数量积(或内积)。规定;向量的投影:cos=R,称为向量在方向上的投影。投影的绝对值称为射影;(3)数量积的几何意义: 等于的长度与在方向上的投影的乘积.(4)向量数量积的性质向量的模与平方的关系:。乘法公式成立;平面向量数量积的运算律交换律成立:;对实数的结合律成立:;分配律成立:。向量的夹角:cos=。当且仅当两个非零向量与同方向时,=00,当且仅当与反方向时=1800,同时与其它任何非零向量之间不谈夹角这一问题.(5)两个向量的数量积的坐标运算已知两个向量,则=。(6)垂直:如果与的夹角为900则称与垂直,记作。两
4、个非零向量垂直的充要条件:O,平面向量数量积的性质。(7)平面内两点间的距离公式设,则或。如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式) .2向量的应用(1)向量在几何中的应用;(2)向量在物理中的应用。四【典例解析】题型1:数量积的概念例1判断下列各命题正确与否:(1);(2);(3)若,则;(4)若,则当且仅当时成立;(5)对任意向量都成立;(6)对任意向量,有。解析:(1)错;(2)对;(3)错;(4)错;(5)错;(6)对。点评:通过该题我们清楚了向量的数乘与数量积之间的区别于联系,重点清楚为零向量,而为零.例2 已知中,过重心的直线交边于,交边于,设
5、的面积为,的面积为,则() ()的取值范围是 .【解析】设,因为是的重心,故,又,因为与共线,所以,即,又与不共线,所以及,消去,得.(),故;(),那么,当与重合时,当位于中点时,故,故但因为与不能重合,故(2)设、是任意的非零平面向量,且相互不共线,则()()= | ()()不与垂直(3+2)(32)=9|24|2中,是真命题的有( )A. B. C. D.解析:(1)答案:D;因为,而;而方向与方向不一定同向.(2)答案:D平面向量的数量积不满足结合律。故假;由向量的减法运算可知|、|、|恰为一个三角形的三条边长,由“两边之差小于第三边”,故真;因为()()=()()=0,所以垂直.故假
6、;(3+2)(32)=94=9|24|2成立。故真。点评:本题考查平面向量的数量积及运算律,向量的数量积运算不满足结合律。题型2:向量的夹角例3(1)过ABC的重心任作一直线分别交AB,AC于点D、E若,则的值为( )(A)4 (B)3 (C)2 (D)1解析:取ABC为正三角形易得3选B评析:本题考查向量的有关知识,如果按常规方法就比较难处理,但是用特殊值的思想就比较容易处理,考查学生灵活处理问题的能力(2)已知向量=(cos,sin),=(cos,sin),且,那么与的夹角的大小是 。(3)已知两单位向量与的夹角为,若,试求与的夹角。(4)| |=1,| |=2,= + ,且,则向量与的夹
7、角为( )A30B60C120D150解析:(2);(3)由题意,且与的夹角为,所以,同理可得。而,设为与的夹角,则。(4)C;设所求两向量的夹角为即:所以点评:解决向量的夹角问题时要借助于公式,要掌握向量坐标形式的运算。向量的模的求法和向量间的乘法计算可见一斑。对于这个公式的变形应用应该做到熟练,另外向量垂直(平行)的充要条件必需掌握.例4(1)设平面向量、的和。如果向量、,满足,且顺时针旋转后与同向,其中,则( )A+= B-+=C+-= D+=(2)(2009广东卷理)已知向量与互相垂直,其中(1)求和的值;(2)若,求的值 解 (1)与互相垂直,则,即,代入得,又,.(2),则,2、(
8、山东临沂2009年模拟)如图,已知ABC中,|AC|=1,ABC=,BAC=,记。(1) 求关于的表达式;(2) 求的值域。解:(1)由正弦定理,得 (2)由,得 ,即的值域为.3. 已知,。 (1)求; (2)设BAC,且已知cos(+x) ,求sinx解:(1)由已知 CDAB,在RtBCD中BC2=BD2+CD2, 又CD2=AC2AD2, 所以BC2=BD2+AC2AD2=49,4分所以6分(2)在ABC中, 8分 而 如果,则 10分 点评:对于平面向量的数量积要学会技巧性应用,解决好实际问题.题型3:向量的模例5(1)已知向量与的夹角为,则等于( ) A5B4C3D1(2)(200
9、9辽宁卷文)平面向量a与b的夹角为,a(2,0), | b |1,则 | a2b |等于( )A. B.2 C.4 D.12解析 由已知|a|2,|a2b|2a24ab4b24421cos60412解析:(1)B;(2)B点评:掌握向量数量积的逆运算,以及。例6已知(3,4),(4,3),求x,y的值使(x+y),且x+y=1。解析:由(3,4),(4,3),有x+y=(3x+4y,4x+3y);又(x+y)(x+y)3(3x+4y)+4(4x+3y)=0;即25x+24y ;又x+y=1x+y;(x+4y)(x+3y);整理得25x48xy+25y即x(25x+24y)+24xy+25y ;
10、由有24xy+25y ;将变形代入可得:y=;再代回得:。点评:这里两个条件互相制约,注意体现方程组思想。题型4:向量垂直、平行的判定例7已知向量,且,则 。解析:,。例8已知,按下列条件求实数的值。(1);(2);。解析:(1);(2);。点评:此例展示了向量在坐标形式下的平行、垂直、模的基本运算.题型5:平面向量在代数中的应用例9已知。 分析:,可以看作向量的模的平方,而则是、的数量积,从而运用数量积的性质证出该不等式。 证明:设 则。点评:在向量这部分内容的学习过程中,我们接触了不少含不等式结构的式子,如等。例10已知,其中。 (1)求证:与互相垂直; (2)若与()的长度相等,求。解析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010年高考数学一轮复习精品学案人教版a版平面向量的数量积及应用doc-高中数学 2010 年高 数学 一轮 复习 精品 人教版 平面 向量 数量 应用 doc 高中数学
链接地址:https://www.taowenge.com/p-41769521.html
限制150内