2010年高考数学解答题分类汇编——立体几何doc--高中数学 .doc
《2010年高考数学解答题分类汇编——立体几何doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010年高考数学解答题分类汇编——立体几何doc--高中数学 .doc(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网2010年高考数学试题分类汇编立体几何(2010上海文数)20.(本大题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径取何值时,取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素). 解析:(1) 设圆柱形灯笼的母线长为l,则l=1.2-2r(0r0,所以“在(-,+)内无极值点”等价于
2、“在(-,+)内恒成立”。由(*)式得。又解 得即的取值范围(2010北京理数)(16)(本小题共14分) 如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CEAC,EFAC,AB=,CE=EF=1.()求证:AF平面BDE;()求证:CF平面BDE;()求二面角A-BE-D的大小。 证明:(I) 设AC与BD交与点G。 因为EF/AG,且EF=1,AG=AC=1. 所以四边形AGEF为平行四边形. 所以AF/平面EG, 因为平面BDE,AF平面BDE, 所以AF/平面BDE. (II)因为正方形ABCD和四边形ACEF所在的平面 相互垂直,且CEAC, 所以CE平面ABCD. 如图,
3、以C为原点,建立空间直角坐标系C-. 则C(0,0,0),A(,0),B(0,0). 所以,. 所以, 所以,. 所以BDE.(III) 由(II)知,是平面BDE的一个法向量. 设平面ABE的法向量,则,. 即所以且 令则. 所以. 从而。 因为二面角为锐角, 所以二面角的大小为.(2010四川理数)(18)(本小题满分12分) 已知正方体ABCDABCD的棱长为1,点M是棱AA的中点,点O是对角线BD的中点.()求证:OM为异面直线AA和BD的公垂线;()求二面角MBCB的大小;()求三棱锥MOBC的体积. 本小题主要考查异面直线、直线与平面垂直、二面角、正方体、三棱锥体积等基础知识,并考
4、查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力。解法一:(1)连结AC,取AC中点K,则K为BD的中点,连结OK因为M是棱AA的中点,点O是BD的中点所以AM所以MO 由AAAK,得MOAA因为AKBD,AKBB,所以AK平面BDDB所以AKBD所以MOBD又因为OM是异面直线AA和BD都相交故OM为异面直线AA和BD的公垂线(2)取BB中点N,连结MN,则MN平面BCCB过点N作NHBC于H,连结MH则由三垂线定理得BCMH从而,MHN为二面角M-BC-B的平面角MN=1,NH=Bnsin45=在RtMNH中,tanMHN= 故二面角M-BC-B的大小为arctan2(3)
5、易知,SOBC=SOAD,且OBC和OAD都在平面BCDA内点O到平面MAD距离hVM-OBC=VM-OAD=VO-MAD=SMADh=解法二:以点D为坐标原点,建立如图所示空间直角坐标系D-xyz则A(1,0,0),B(1,1,0),C(0,1,0),A(1,0,1),C(0,1,1),D(0,0,1)(1)因为点M是棱AA的中点,点O是BD的中点所以M(1,0, ),O(,),=(0,0,1),=(-1,-1,1) =0, +0=0 所以OMAA,OMBD又因为OM与异面直线AA和BD都相交故OM为异面直线AA和BD的公垂线.4分(2)设平面BMC的一个法向量为=(x,y,z)=(0,-1
6、,), (1,0,1) 即取z2,则x2,y1,从而=(2,1,2) 取平面BCB的一个法向量为(0,1,0)cos由图可知,二面角M-BC-B的平面角为锐角故二面角M-BC-B的大小为arccos9分(3)易知,SOBCSBCDA设平面OBC的一个法向量为(x1,y1,z1) (1,1,1), (1,0,0) 即取z11,得y11,从而(0,1,1)点M到平面OBC的距离d VMOBC12分(2010天津文数)(19)(本小题满分12分)如图,在五面体ABCDEF中,四边形ADEF是正方形,FA平面ABCD,BCAD,CD=1,AD=,BADCDA45.()求异面直线CE与AF所成角的余弦值
7、; ()证明CD平面ABF;()求二面角B-EF-A的正切值。【解析】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.满分12分.(I)解:因为四边形ADEF是正方形,所以FA/ED.故为异面直线CE与AF所成的角.因为FA平面ABCD,所以FACD.故EDCD.在RtCDE中,CD=1,ED=,CE=3,故cos=.所以异面直线CE和AF所成角的余弦值为.()证明:过点B作BG/CD,交AD于点G,则.由,可得BGAB,从而CDAB,又CDFA,FAAB=A,所以CD平面ABF.()解:由()及已知,可得AG=,即G为AD的中点.取
8、EF的中点N,连接GN,则GNEF,因为BC/AD,所以BC/EF.过点N作NMEF,交BC于M,则为二面角B-EF-A的平面角。连接GM,可得AD平面GNM,故ADGM.从而BCGM.由已知,可得GM=.由NG/FA,FAGM,得NGGM.在RtNGM中,tan,所以二面角B-EF-A的正切值为.(2010天津理数)(19)(本小题满分12分)如图,在长方体中,、分别是棱,上的点,,(1) 求异面直线与所成角的余弦值;(2) 证明平面(3) 求二面角的正弦值。【解析】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算
9、能力和推理论证能力,满分12分。方法一:如图所示,建立空间直角坐标系,点A为坐标原点,设,依题意得,(1) 解:易得,于是 所以异面直线与所成角的余弦值为(2) 证明:已知,于是=0,=0.因此,,又所以平面(3)解:设平面的法向量,则,即不妨令X=1,可得。由(2)可知,为平面的一个法向量。于是,从而所以二面角的正弦值为方法二:(1)解:设AB=1,可得AD=2,AA1=4,CF=1.CE=链接B1C,BC1,设B1C与BC1交于点M,易知A1DB1C,由,可知EFBC1.故是异面直线EF与A1D所成的角,易知BM=CM=,所以 ,所以异面直线FE与A1D所成角的余弦值为(2)证明:连接AC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010年高考数学解答题分类汇编立体几何doc-高中数学 2010 年高 数学 解答 分类 汇编 立体几何 doc 高中数学
限制150内