2011年中考数学一轮复习——第十五讲四边形 doc--初中数学 .doc
《2011年中考数学一轮复习——第十五讲四边形 doc--初中数学 .doc》由会员分享,可在线阅读,更多相关《2011年中考数学一轮复习——第十五讲四边形 doc--初中数学 .doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网2011年中考数学一轮复习第十五讲:四边形知识梳理知识点1.四边形与特殊四边形的关系重点:掌握四边形与特殊四边形的关系难点:理解关系,熟练掌握图形知识(在箭头上填写适当条件).知识点2.平行四边形的性质、判定重点:掌握平行四边形的性质、判定难点:运用平行四边形的性质、判定1.平行四边形的性质边角对角线对称性平行四边形2.平行四边形的判定:边来源:学科网的四边形来源:Zxxk.Com来源:学科网ZXXK来源:学科网ZXXK来源:学科网是平行四来源:学.科.网来源:学科网边形来源:学科网来源:学。科。网来源:Zxxk.Com角对角线例1. 如图,在ABCD中,已知对角线AC和B
2、D相交于点O,AOB的周长为15,AB=6,那么对角线AC+BD=_解题思路:运用平行四边形的对角线互相平分,AC+BD=2(AO+BO)=18例2如图,在ABCD中, E、F是对角线AC上的两点,请你再添加一个条件,使四边形DEBF是平行四边形,你添加的条件是 ,说明你的理由。解题思路:运用平行四边形的判定(对角线互相平分)AE=CF或AF=CE练习1.下面命题中,正确的是()A. 一组对角相等的四边形是平行四边形B. 一组对角互补的四边形是平行四边形 C. 两组边分别相等的四边形是平行四边 D. 两组对角分别相等的四边形是平行四边形2.平行四边形的一边的长为10,则这个平行四边形的两条对角
3、线的长可以是( )A. B. C. D.3.已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。求证:(1)ADFCBE;(2)EBDF。答案:1.D 2.D 3. 证明:(1)AE=CFAE+EF=CF+FE即AF=CE 又ABCD是平行四边形,AD=CB,ADBCDAF=BCE 在ADF与CBE中 ADFCBE(SAS)(2)ADFCBEDFA=BECDFEB知识点3.特殊四边形的性质、判定重点:掌握特殊四边形的性质、判定难点:运用特殊四边形的性质、判定1.特殊四边形的性质边角对角线对称性面积公式矩形菱形正方形梯形直角梯形等腰梯形2.特殊四边形的判定:是矩形是菱形是正方
4、形是等腰梯形例1如图,已知以ABC的三边为边在BC的同侧作等边ABD、BCE、ACF,请回答下列问题:(1)四边形ADEF是什么四边形?写出理由。(2)当ABC满足什么条件时,四边形ADEF是菱形?(3)当ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?解题思路:解探索性问题,一般借助直观、直觉或经验先猜测结论,再结合条件加以说明,要注意抓住图形的特殊性,要得到特殊条件,就要构造特殊图形解:(1)四边形ADEF是平行四边形;ABD、BCE为等边三角形,AB = BD = AD,BC = CE = EB,ABD = CBE = 60.DBE = CBA.EBDCBA. DE = AC
5、.又ADC为等边三角形,CF = AF = AC.DE = AF.同理可得AD = EF.四边形ADEF是平行四边形(2)若四边形ADEF为菱形,ADAF,所以ABAC所以当ABC满足ABAC时,四边形ADEF是菱形;(3)由(1)得BACBDE60ADE,当ADE0时,以A、D、E、F为顶点的四边形不存时,此时,BAC60所以当BAC60时,以A、D、E、F为顶点的四边形不存在例2如图,在平行四边形中,为的中点,连接并延长交的延长线于点(1)求证:;(2)当与满足什么数量关系时,四边形是矩形,并说明理由解题思路:特殊四边形(平行四边形、矩形、菱形、正方形、等腰梯形)的判定一定要熟练不能混淆,
6、根据题目的条件选择合适的判定方法。解:(1)证明:四边形是平行四边形为的中点.(2)解:当时,四边形是矩形.理由如下: 四边形是平行四边形ABCD四边形是矩形.例3 . 如图,在梯形中,求的长解题思路:解决梯形问题的常用方法(如下图所示): “作高”:使两腰在两个直角三角形中“平移对角线”:使两条对角线在同一个三角形中“延腰”:构造具有公共角的两个三角形“等积变形”:连接梯形上底一端点和另一腰中点,并延长交下底的延长线于一ABCDFE图1解析一:如图1,分别过点作于点,于点又,四边形是矩形,在中,解析2:如图2,过点作,分别交于点1分,ABCDFE图2,在中,在中,在中,练习1.如图,四边形中
7、,平分,交于求证:四边形是菱形;2.如图,等腰梯形ABCD中,ADBC,AD5,AB7,BC12,求B的度数3.在梯形ABCD中,ABCD,AB=2,BC=3,CD=1,E是AD中点,试判断EC与EB的位置关系,并写出推理过程。答案1. 解,即,又,四边形是平行四边形 平分,又,四边形是菱形 2. 解:过点A作AEDC交BC于E,ADBC,四边形AECD为平行四边形ADEC,AECDABCD7,AD5,BC12,BEBCCE1257,AECDAB7 ABE为等边三角形故B603. 解:略证:过点C作于F,则四边形AFCD是矩形,在中,可算得则AD=,故DE=AE=在和中, 最新考题本讲内容是中
8、考重点之一,如特殊四边形(平行四边形、矩形、菱形、正方形、等腰梯形)的性质和判定,以及运用这些知识解决实际问题中考中常以选择题、填空题、解答题和证明题等形式呈现,近年的中考中又出现了开放题、应用题、阅读理解题、学科间综合题、动点问题、折叠问题等,这都成了热点题型,应引起同学们高度关注考查目标一、图形的性质与判定例1(09年 南京)如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的A.三角形 B.平行四边形 C.矩形 D.正方形解题思路:运用梯形的中位线性质,熟悉平行四边形的特性例2(09年 南京)如图,在ABCD中,E、F为BC上的两点,且BE=CF,AF=
9、DE.求证:(1)ABFDCE; (2)四边形ABCD是矩形.解题思路:运用全等、矩形的判定.解:(1)BE=CF, BF=BE+EF,CE=CF+EF, BF=CE. 四边形ABCD是平行四边形, AB=DC. 在ABF和DCE中, AB=DC,BF=CE,AF=DE, ABFDCE. (2)解法一:ABFDCE, B=C, 四边形ABCD是平行四边形, ABCD. B+C=180 B=C=90 所以四边形ABCD是矩形. 解法二:连接AC,DB. ABFDCE, AFB=DEC, AFC=DEB. 在AFC和DEB中, AF=DE, AFC=DEB,CF=BE. AFCDEB, AC=DB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011年中考数学一轮复习第十五讲四边形 doc-初中数学 2011 年中 数学 一轮 复习 第十五 四边形 doc 初中
限制150内