2010届高考数学复习专题教案第五章 不等式doc--高中数学 .doc
《2010届高考数学复习专题教案第五章 不等式doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010届高考数学复习专题教案第五章 不等式doc--高中数学 .doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网第五章不等式5.1不等式的解法一、知识导学1. 一元一次不等式axb(1)当a0时,解为;(2)当a0时,解为;(3)当a0,b0时无解;当a0,b0时,解为R2. 一元二次不等式:(如下表)其中a0,x1,x2是一元二次方程ax2+bx+c=0的两实根,且x1x2 类型解集ax2+bx+c0ax2+bx+c0ax2+bx+c0ax2+bx+c00xxx1或xx2xxx1或xx2xx1xx2xx1xx20xx-,xRRxx=-0RR3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是:将f(x)的最高次项的系数化为正数;将f(x)分解为若干个一次因式的积;将每一
2、个一次因式的根标在数轴上,从右上方依次通过每一点画曲线;根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集.4.分式不等式:先整理成0或0的形式,转化为整式不等式求解,即:0f(x)g(x)00然后用“根轴法”或化为不等式组求解.二、疑难知识导析1.不等式解法的基本思路解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元一次不等式和一元二次不
3、等式,二要保证每步转化都要是等价变形.2.不等式组的解集是本组各不等式解集的交集,所以在解不等式组时,先要解出本组内各不等式的解集,然后取其交集,在取交集时,一定要利用数轴,将本组内各不等式的解集在同一数轴上表示出来,注意同一不等式解的示意线要一样高,不要将一个不等式解集的两个或几个区间误看成是两个或几个不等式的解集.3.集合的思想和方法在解不等式问题中有广泛的应用,其难点是区分何时取交集,何时取并集.解不等式的另一个难点是含字母系数的不等式求解注意分类.三、经典例题导讲例1 如果kx2+2kx(k+2)0恒成立,则实数k的取值范围是.A. 1k0 B. 1k0 C. 1k0 D. 1k0错解
4、:由题意:解得:1k0错因:将kx2+2kx(k+2)0看成了一定是一元二次不等式,忽略了k0的情况.正解:当k0时,原不等式等价于20,显然恒成立, k0符合题意.当k0时,由题意:解得:1k4故选D.错因:忽略了a4时,x|2x4x|2xa,此时A是B的充要条件,不是充分不必要条件.正解:由x13得:2x4,又由(x2)(xa)=0得x=2或xa,A是B的充分不必要条件,x|2x4x|2xaa4故选C.例3已知f(x) = ax + ,若求的范围.错解: 由条件得 2 2得 +得 错因:采用这种解法,忽视了这样一个事实:作为满足条件的函数,其值是同时受制约的.当取最大(小)值时,不一定取最
5、大(小)值,因而整个解题思路是错误的.正解: 由题意有, 解得: 把和的范围代入得 例4 解不等式(x+2)2(x+3)(x2)错解:(x+2)2原不等式可化为:(x+3)(x2)原不等式的解集为x| x 3或x错因:忽视了“”的含义,机械的将等式的运算性质套用到不等式运算中.正解:原不等式可化为:(x+2)2(x+3)(x2) 或(x+2)2(x+3)(x2),解得:x=3或x2或x2解得:x 3或x2原不等式的解集为x| x 3或x或x例5 解关于x的不等式解:将原不等式展开,整理得: 讨论:当时,当时,若0时;若0时当时,点评:在解一次不等式时,要讨论一次项系数的符号.例6关于x的不等式
6、的解集为求关于x的不等式的解集解:由题设知,且是方程的两根, 从而 可以变形为即: 点评:二次不等式的解集与二次方程的根之间的联系是解本题的关健,这也体现了方程思想在解题中的简单应用.例7不等式的解集为解:,0, 解得反思:在数的比较大小过程中,要遵循这样的规律,异中求同即先将这些数的部分因式化成相同的部分,再去比较它们剩余部分,就会很轻易啦.一般在数的比较大小中有如下几种方法:(1)作差比较法和作商比较法,前者和零比较,后者和1比较大小;(2)找中间量,往往是1,在这些数中,有的比1大,有的比1小;,(3)计算所有数的值;(4)选用数形结合的方法,画出相应的图形;(5)利用函数的单调性等等.
7、四、典型习题导练1.解不等式2. 解不等式 3.解不等式 4. 解不等式 5.解不等式6.k为何值时,下式恒成立:7. 解不等式8. 解不等式5.2简单的线性规划一、知识导学1. 目标函数: 是一个含有两个变 量 和 的 函数,称为目标函数2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题只含有两个变量的简单线性规划问题可用图解法来解决5. 整数线性规划:要求量取整数的线性规划称为整数线性规划二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学
8、研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域若 直 线 不 过 原点,通 常 选 择 原 点 代入检验3. 平 移 直 线 k 时,直线必须经过可行域
9、4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.三、经典例题导讲例1 画出不等式组表示的平面区域.错解:如图(1)所示阴影部分即为不等式组表示的平面区域.错因一是实虚线不清,二是部分不等式所表示的平面区域弄错了.正解:如图(2)所示阴影部分即为不等式组表示的平面区域.例2
10、 已知1xy2,且2x+y4,求4x2y的范围.错解:由于1xy2,2x+y4,+ 得32x6 (1)+ 得:02y3 .2+(1)得. 34x2y12错因:可行域范围扩大了. 正解:线性约束条件是:令z4x2y,画出可行域如右图所示,由得A点坐标(1.5,0.5)此时z41.520.55.由得B点坐标(3,1)此时z432110.54x2y10 例3 已知,求x2+y2的最值.错解:不等式组表示的平面区域如右图所示ABC的内部(包括边界),令z= x2+y2由得A点坐标(4,1),此时zx2+y242+1217,由得B点坐标(1,6),此时zx2+y2(1)2+(6)237,由得C点坐标(3
11、,2),此时zx2+y2(3)2+2213,当时x2+y2取得最大值37,当时x2+y2取得最小值13.错因:误将求可行域内的点到原点的距离的平方的最值误认为是求三点A、B、C到原点的距离的平方的最值.正解:不等式组表示的平面区域如图所示ABC的内部(包括边界),令z= x2+y2,则z即为点(x,y)到原点的距离的平方.由得A点坐标(4,1),此时zx2+y242+1217,由得B点坐标(1,6),此时zx2+y2(1)2+(6)237,由得C点坐标(3,2),此时zx2+y2(3)2+2213,而在原点处,此时zx2+y202+020,当时x2+y2取得最大值37,当时x2+y2取得最小值
12、0. 例4某家具厂有方木料90m3,五合板600m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2,生产每个书橱需要方木料0.2m3,五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使得利润最大?分析: 数据分析列表书桌书橱资源限制木料(m3)010290五合板(m2)21600利润(元/张)80120计划生产(张)xy设生产书桌x张,书橱y张,利润z元,则约束条件为 2x+y-600=0 A(100,400) x+2y-900=0 2x+3y=0目标函数z
13、=80x+120y作出上可行域:作出一组平行直线2x+3y=t, 此直线经过点A(100,400)时,即合理安排生产,生产书桌100张,书橱400张,有最大利润为zmax=80100+400120=56000(元)若只生产书桌,得0x300,即最多生产300张书桌,利润为z=80300=24000(元)若只生产书橱,得0,先假设,由题设及其它性质,推出矛盾,从而肯定.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法.5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以
14、便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法.主要有两种换元形式.(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示.此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题; (2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简.如+=1,可以用=1-,=或=1/2+,=1/2-进行换元.二、疑难知识导析1.在用商值比较法证明不等式时,要注意分母的正、负号,以确定
15、不等号的方向.2.分析法与综合法是对立统一的两个方面,前者执果索因,利于思考,因为它方向明确,思路自然,易于掌握;后者是由因导果,宜于表述,因为它条理清晰,形式简洁,适合人们的思维习惯.但是,用分析法探求证明不等式,只是一种重要的探求方式,而不是一种好的书写形式,因为它叙述较繁,如果把“只需证明”等字眼不写,就成了错误.而用综合法书写的形式,它掩盖了分析、探索的过程.因而证明不等式时,分析法、综合法常常是不能分离的.如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程,以适应人们习惯的思维规律.还有的不等式证明难度较大,需一边分析,一边综合,实现两头往
16、中间靠以达到证题的目的.这充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系.分析的终点是综合的起点,综合的终点又成为进一步分析的起点.3.分析法证明过程中的每一步不一定“步步可逆”,也没有必要要求“步步可逆”,因为这时仅需寻找充分条件,而不是充要条件.如果非要“步步可逆”,则限制了分析法解决问题的范围,使得分析法只能使用于证明等价命题了.用分析法证明问题时,一定要恰当地用好“要证”、“只需证”、“即证”、“也即证”等词语.4.反证法证明不等式时,必须要将命题结论的反面的各种情形一一加以导出矛盾.5.在三角换元中,由于已知条件的限制作用,可能对引入的角有一定的限制,应引起高度重视
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010届高考数学复习专题教案第五章不等式doc-高中数学 2010 高考 数学 复习 专题 教案 第五 不等式 doc 高中数学
限制150内