2010年高考数学一轮复习精品学案(人教版A版)――等比数列 doc--高中数学 .doc
《2010年高考数学一轮复习精品学案(人教版A版)――等比数列 doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010年高考数学一轮复习精品学案(人教版A版)――等比数列 doc--高中数学 .doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网2010年高考数学一轮复习精品学案(人教版A版)等比数列一【课标要求】1通过实例,理解等比数列的概念;2探索并掌握等差数列的通项公式与前n项和的公式;3能在具体的问题情境中,发现数列的等比关系,并能用有关知识解决相应的问题。体会等比数列与指数函数的关系.二【命题走向】等比数列与等差数列同样在高考中占有重要的地位,是高考出题的重点。客观性的试题考察等比数列的概念、性质、通项公式、求和公式等基础知识和基本性质的灵活应用,对基本的运算要求比较高,解答题大多以数列知识为工具.预测2010年高考对本讲的考察为:(1)题型以等比数列的公式、性质的灵活应用为主的12道客观题目;(2)关于
2、等比数列的实际应用问题或知识交汇题的解答题也是重点;(3)解决问题时注意数学思想的应用,象通过逆推思想、函数与方程、归纳猜想、等价转化、分类讨论等,它将能灵活考察考生运用数学知识分析问题和解决问题的能力.三【要点精讲】1等比数列定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母表示,即:数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,。(注意:“从第二项起”、“常数”、等比数列的公比和项都不为零)2等比数列通项公式为:。说明:(1)由等比数列的通项公式可以知道:当公比时该数列既是等
3、比数列也是等差数列;(2)等比数列的通项公式知:若为等比数列,则。3等比中项如果在中间插入一个数,使成等比数列,那么叫做的等比中项(两个符号相同的非零实数,都有两个等比中项).4等比数列前n项和公式一般地,设等比数列的前n项和是,当时, 或;当q=1时,(错位相减法)。说明:(1)和各已知三个可求第四个;(2)注意求和公式中是,通项公式中是不要混淆;(3)应用求和公式时,必要时应讨论的情况。四【典例解析】题型1:等比数列的概念例1“公差为0的等差数列是等比数列”;“公比为的等比数列一定是递减数列”;“a,b,c三数成等比数列的充要条件是b2=ac”;“a,b,c三数成等差数列的充要条件是2b=
4、a+c”,以上四个命题中,正确的有( )A1个 B2个 C3个 D4个解析:四个命题中只有最后一个是真命题。命题1中未考虑各项都为0的等差数列不是等比数列;命题2中可知an+1=an,an+1an未必成立,当首项a10时,anan,即an+1an,此时该数列为递增数列;命题3中,若a=b=0,cR,此时有,但数列a,b,c不是等比数列,所以应是必要而不充分条件,若将条件改为b=,则成为不必要也不充分条件。点评:该题通过一些选择题的形式考察了有关等比数列的一些重要结论,为此我们要注意一些有关等差数列、等比数列的重要结论。例2命题1:若数列an的前n项和Sn=an+b(a1),则数列an是等比数列
5、;命题2:若数列an的前n项和Sn=an2+bn+c(a0),则数列an是等差数列;命题3:若数列an的前n项和Sn=nan,则数列an既是等差数列,又是等比数列;上述三个命题中,真命题有( )A0个 B1个 C2个 D3个解析: 由命题1得,a1=a+b,当n2时,an=SnSn1=(a1)an1。若an是等比数列,则=a,即=a,所以只有当b=1且a0时,此数列才是等比数列。由命题2得,a1=a+b+c,当n2时,an=SnSn1=2na+ba,若an是等差数列,则a2a1=2a,即2ac=2a,所以只有当c=0时,数列an才是等差数列。由命题3得,a1=a1,当n2时,an=SnSn1=
6、a1,显然an是一个常数列,即公差为0的等差数列,因此只有当a10;即a1时数列an才又是等比数列。点评:等比数列中通项与求和公式间有很大的联系,上述三个命题均涉及到Sn与an的关系,它们是an=,正确判断数列an是等差数列或等比数列,都必须用上述关系式,尤其注意首项与其他各项的关系。上述三个命题都不是真命题,选择A。题型2:等比数列的判定例3已知等比数列中,则其前3项的和的取值范围是(D )() ()() ()【解1】:等比数列中 当公比为1时, ; 当公比为时, 从而淘汰()()()故选D;【解2】:等比数列中 当公比时,; 当公比时, 故选D;【考点】:此题重点考察等比数列前项和的意义,
7、等比数列的通项公式,以及均值不等式的应用;【突破】:特殊数列入手淘汰;重视等比数列的通项公式,前项和,以及均值不等式的应用,特别是均值不等式使用的条件;点评:本题主要考查等比数列的概念和基本性质,推理和运算能力。例4(2009浙江文)设为数列的前项和,其中是常数 (I) 求及; (II)若对于任意的,成等比数列,求的值解()当,() 经验,()式成立, ()成等比数列,即,整理得:,对任意的成立, 题型3:等比数列的通项公式及应用例5一个等比数列有三项,如果把第二项加上4,那么所得的三项就成为等差数列,如果再把这个等差数列的第三项加上32,那么所得的三项又成为等比数列,求原来的等比数列.解析:
8、设所求的等比数列为a,aq,aq2;则2(aq+4)=a+aq2,且(aq+4)2=a(aq2+32);解得a=2,q=3或a=,q=5;故所求的等比数列为2,6,18或,。点评:第一种解法利用等比数列的基本量,先求公比,后求其它量,这是解等差数列、等比数列的常用方法,其优点是思路简单、实用,缺点是有时计算较繁。例6(2009山东卷文)等比数列的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上. (1)求r的值; (11)当b=2时,记 求数列的前项和解:因为对任意的,点,均在函数且均为常数)的图像上.所以得,当时, 当时,又因为为等比数列, 所以, 公比为, 所以(2)当b=2
9、时,, 则 相减,得所以【命题立意】:本题主要考查了等比数列的定义,通项公式,以及已知求的基本题型,并运用错位相减法求出一等比数列与一等差数列对应项乘积所得新数列的前项和.例7(1)(2009安徽卷文)已知数列 的前n项和,数列的前n项和()求数列与的通项公式;()设,证明:当且仅当n3时, 【思路】由可求出,这是数列中求通项的常用方法之一,在求出后,进而得到,接下来用作差法来比较大小,这也是一常用方法.【解析】(1)由于当时, 又当时数列项与等比数列,其首项为1,公比为 (2)由(1)知由即即又时成立,即由于恒成立. 因此,当且仅当时, 点评:对于等比数列求和问题要先分清数列的通项公式,对应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010年高考数学一轮复习精品学案人教版A版等比数列 doc-高中数学 2010 年高 数学 一轮 复习 精品 人教版 等比数列 doc 高中数学
限制150内