2010高中数学竞赛标准讲义第七章解三角形 doc--高中数学 .doc
《2010高中数学竞赛标准讲义第七章解三角形 doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010高中数学竞赛标准讲义第七章解三角形 doc--高中数学 .doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网2010高中数学竞赛标准讲义:第七章:解三角形一、基础知识在本章中约定用A,B,C分别表示ABC的三个内角,a, b, c分别表示它们所对的各边长,为半周长。1正弦定理:=2R(R为ABC外接圆半径)。推论1:ABC的面积为SABC=推论2:在ABC中,有bcosC+ccosB=a.推论3:在ABC中,A+B=,解a满足,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以SABC=;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边
2、同乘以2R得bcosC+ccosB=a;再证推论3,由正弦定理,所以,即sinasin(-A)=sin(-a)sinA,等价于cos(-A+a)-cos(-A-a)= cos(-a+A)-cos(-a-A),等价于cos(-A+a)=cos(-a+A),因为0-A+a,-a+A. 所以只有-A+a=-a+A,所以a=A,得证。2余弦定理:a2=b2+c2-2bccosA,下面用余弦定理证明几个常用的结论。(1)斯特瓦特定理:在ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2= (1)【证明】 因为c2=AB2=AD2+BD2-2ADBDcos,所以c2=AD2+p2-2ADpcos
3、 同理b2=AD2+q2-2ADqcos, 因为ADB+ADC=,所以cosADB+cosADC=0,所以q+p得qc2+pb2=(p+q)AD2+pq(p+q),即AD2=注:在(1)式中,若p=q,则为中线长公式(2)海伦公式:因为b2c2sin2A=b2c2 (1-cos2A)= b2c2 (b+c)-a2a2-(b-c) 2=p(p-a)(p-b)(p-c).这里所以SABC=二、方法与例题1面积法。例1 (共线关系的张角公式)如图所示,从O点发出的三条射线满足,另外OP,OQ,OR的长分别为u, w, v,这里,+(0, ),则P,Q,R的共线的充要条件是【证明】P,Q,R共线(+)
4、=uwsin+vwsin,得证。2正弦定理的应用。例2 如图所示,ABC内有一点P,使得BPC-BAC=CPA-CBA=APB-ACB。求证:APBC=BPCA=CPAB。【证明】 过点P作PDBC,PEAC,PFAB,垂足分别为D,E,F,则P,D,C,E;P,E,A,F;P,D,B,F三组四点共圆,所以EDF=PDE+PDF=PCA+PBA=BPC-BAC。由题设及BPC+CPA+APB=3600可得BAC+CBA+ACB=1800。所以BPC-BAC=CPA-CBA=APB-ACB=600。所以EDF=600,同理DEF=600,所以DEF是正三角形。所以DE=EF=DF,由正弦定理,C
5、DsinACB=APsinBAC=BPsinABC,两边同时乘以ABC的外接圆直径2R,得CPBA=APBC=BPAC,得证:例3 如图所示,ABC的各边分别与两圆O1,O2相切,直线GF与DE交于P,求证:PABC。【证明】 延长PA交GD于M,因为O1GBC,O2DBC,所以只需证由正弦定理,所以另一方面,所以,所以,所以PA/O1G,即PABC,得证。3一个常用的代换:在ABC中,记点A,B,C到内切圆的切线长分别为x, y, z,则a=y+z, b=z+x, c=x+y.例4 在ABC中,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c) 3abc.【证明】 令a=y+z
6、, b=z+x, c=x+y,则abc=(x+y)(y+z)(z+x)=8xyz=(b+c-a)(a+c-b)(a+b-c)=a2(b+c-a)+b2(c+a-b)+c2(a+b-c)-2abc.所以a2(b+c-a)+b2(c+a-b)+c2(a+b-c) 3abc.4三角换元。例5 设a, b, cR+,且abc+a+c=b,试求的最大值。【解】 由题设,令a=tan, c=tan, b=tan,则tan=tan(+), P=2sinsin(2+)+3cos2,当且仅当+=,sin=,即a=时,Pmax=例6 在ABC中,若a+b+c=1,求证: a2+b2+c2+4abc【证明】 设a=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010高中数学竞赛标准讲义第七章解三角形 doc-高中数学 2010 高中数学 竞赛 标准 讲义 第七 三角形 doc
限制150内