2010届高考数学总复习(五年高考)(三年联考)精品题库第十三章概率与统计doc--高中数学 .doc
《2010届高考数学总复习(五年高考)(三年联考)精品题库第十三章概率与统计doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010届高考数学总复习(五年高考)(三年联考)精品题库第十三章概率与统计doc--高中数学 .doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网第十三章 概率与统计第一部分 五年高考荟萃2009年高考题一、选择题1.(09山东11)在区间上随机取一个数,的值介于0到之间的概率为 ( )A B C D 【解析】在区间-1,1上随机取一个数x,即时,要使的值介于0到之间,需使或或,区间长度为,由几何概型知的值介于0到之间的概率为.故选A.答案 A2.(09山东文)在区间上随机取一个数x,的值介于0到之间的概率为( ).A. B. C. D. 【解析】在区间 上随机取一个数x,即时,要使的值介于0到之间,需使或,区间长度为,由几何概型知的值介于0到之间的概率为.故选A. 答案 A3.(09安徽卷理)考察正方体6个面的中心
2、,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )ABCDEFA B C D【解析】如图,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,共有种不同取法,其中所得的两条直线相互平行但不重合有 共12对,所以所求概率为,选D答案D.(2009安徽卷文)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于 ( ) A.1 B. C. D. 0 【解析】依据正方体各中心对称性可判断等边三角形有个.由正方体各中心的对称性可得任取三个点必构成等
3、边三角形,故概率为1,选A。 答案 A5、(2009江西卷文)甲、乙、丙、丁个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( )A B C D【解析】所有可能的比赛分组情况共有种,甲乙相遇的分组情况恰好有6种,故选. 答案 D6.(2009江西卷理)为了庆祝六一儿童节,某食品厂制作了种不同的精美卡片,每袋食品随机装入一张卡片,集齐种卡片可获奖,现购买该种食品袋,能获奖的概率为( )A B C D 【解析】故选D答案 D7.(2009四川卷文)设矩形的长为,宽为,其比满足,这种矩形给人以美感,称为黄金矩形。黄金矩形
4、常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A.甲批次的总体平均数与标准值更接近 B.乙批次的总体平均数与标准值更接近 C.两个批次总体平均数与标准值接近程度相同 D.两个批次总体平均数与标准值接近程度不能确定【解析】甲批次的平均数为0.617,乙批次的平均数为0.613答案 A8.(2009辽宁卷文)ABCD为长方形,AB2,BC1,
5、O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为( )A B C D 【解析】长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为 因此取到的点到O的距离小于1的概率为2 取到的点到O的距离大于1的概率为答案 B.(2009年上海卷理)若事件与相互独立,且,则的值等于( )A B C D【解析】答案 B二、填空题10.(2009广东卷理)已知离散型随机变量的分布列如右表若,则 , 【解析】由题知,解得,.答案 11.(2009安徽卷理)若随机变量,则=_.答案 12.(2009安徽卷文)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这
6、三条线段为边可以构成三角形的概率是_。【解析】依据四条边长可得满足条件的三角形有三种情况:2、3、4或3、4、5或2、4、5,故=0.75. 答案 0.7513.(2009江苏卷)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 . 【解析】 考查等可能事件的概率知识。 从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2。答案 0.214.(2009江苏卷)某校甲、乙两个班级各有5名编号为1,2,3,
7、4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学生1号2号3号4号5号甲班67787乙班67679则以上两组数据的方差中较小的一个为= . 【解析】 考查统计中的平均值与方差的运算。甲班的方差较小,数据的平均值为7,故方差 答案 15.(2009湖北卷文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。【解析】三人均达标为0.80.60.5=0.24,三人中至少有一人达标为1-0.24=0.76答案 0.24 0.7616.(2009福建卷文)点A为周长等于3的圆周上的一个定点,若在该圆周上随机取
8、一点B,则劣弧AB的长度小于1的概率为 。【解析】如图可设,则,根据几何概率可知其整体事件是其周长,则其概率是。 答案 17(2009重庆卷文)从一堆苹果中任取5只,称得它们的质量如下(单位:克)125 124 121 123 127则该样本标准差 (克)(用数字作答)【解析】因为样本平均数,则样本方差所以答案 2三、解答题18、(2009浙江卷理)(本题满分14分)在这个自然数中,任取个数 (I)求这个数中恰有个是偶数的概率; (II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是)求随机变量的分布列及其数学期望解(I)记“这3个数恰有一个是偶数”为事件A,则
9、; (II)随机变量的取值为的分布列为012P所以的数学期望为 19、(2009北京卷文)(本小题共13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2 min.()求这名学生在上学路上到第三个路口时首次遇到红灯的概率;()这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率. 解()设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为.()设这名学生在上学路上因遇到红灯停留的总时间至多是4min为事件B,这名
10、学生在上学路上遇到次红灯的事件.则由题意,得,.由于事件B等价于“这名学生在上学路上至多遇到两次红灯”,事件B的概率为.20、(2009北京卷理)(本小题共13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.()求这名学生在上学路上到第三个路口时首次遇到红灯的概率;()求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.解 ()设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为.()由题意,可得可能取的
11、值为0,2,4,6,8(单位:min).事件“”等价于事件“该学生在路上遇到次红灯”(0,1,2,3,4),即的分布列是02468的期望是.21、(2009山东卷理)(本小题满分12分)在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为 0 2 3 4 5 p 0.03 P1 P2 P3 P4 (1)求q的值; (2)求随机变量的数学期望E;(3)
12、试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。解 (1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25, P(B)= q,. 根据分布列知: =0时=0.03,所以,q=0.8.(2)当=2时, P1= =0.75 q( )2=1.5 q( )=0.24当=3时, P2 =0.01,当=4时, P3=0.48,当=5时, P4=0.24所以随机变量的分布列为 0 2 3 4 5 p 0.03 0.24 0.01 0.48 0.24 随机变量的数学期望(3)该同学选择都在B处投篮得分超过3分的概率为;该同学选择(1
13、)中方式投篮得分超过3分的概率为0.48+0.24=0.72.由此看来该同学选择都在B处投篮得分超过3分的概率大.22、(2009安徽卷理)(本小题满分12分) 某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是.同样也假定D受A、B和C感染的概率都是.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).本小题主要考查古典概型及其概率计算,考查取有限个值的离散型随机变量及其分布列和均值的概念,通过
14、设置密切贴近现实生活的情境,考查概率思想的应用意识和创新意识。体现数学的科学价值。本小题满分12分。解 随机变量X的分布列是X123PX的均值为附:X的分布列的一种求法共有如下6种不同的可能情形,每种情形发生的概率都是:ABCDABCDABCDABDCACDB在情形和之下,A直接感染了一个人;在情形、之下,A直接感染了两个人;在情形之下,A直接感染了三个人。23、(2009江西卷理)(本小题满分12分)某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“
15、支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额 (1) 写出的分布列; (2) 求数学期望 解(1)的所有取值为 (2). 24、(2009湖北卷理)(本小题满分10分)(注意:在试题卷上作答无效)一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量,求的分布列和数学期望。 解 依题意,可分别取、6、11取,则有 的分布列为567891011 .25、(2009辽宁卷理)(本
16、小题满分12分)某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。()设X表示目标被击中的次数,求X的分布列;()若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A) 解()依题意X的分列为 ()设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2. B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,,所求的概率为 26、(2009湖南卷文)(本小题满分12分)为拉动经
17、济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、.现有3名工人独立地从中任选一个项目参与建设.求:(I)他们选择的项目所属类别互不相同的概率; (II)至少有1人选择的项目属于民生工程的概率.解 记第名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件 i=1,2,3.由题意知相互独立,相互独立,相互独立,(i,j,k=1,2,3,且i,j,k互不相同)相互独立,且 ()他们选择的项目所属类别互不相同的概率P= ()至少有1人选择的项目属于民生工程的概率 P=27、(2009全国卷文)(本小题满分12分)(注
18、意:在试题卷上作答无效)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。()求再赛2局结束这次比赛的概率;()求甲获得这次比赛胜利的概率。【解析】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,综合题。解 记“第局甲获胜”为事件,“第局甲获胜”为事件。()设“再赛2局结束这次比赛”为事件A,则,由于各局比赛结果相互独立,故。()记“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从
19、而,由于各局比赛结果相互独立,故 28、(2009陕西卷文)(本小题满分12分)椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1() 求该企业在一个月内共被消费者投诉不超过1次的概率;()假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。解 解答1()设事件A表示“一个月内被投诉的次数为0”事件B表示“一个月内被投诉的次数为1”所以()设事件表示“第个月被投诉的次数为0”事件表示“第个月被投诉的次数为1”事件表示“第个月被投诉的次数为2”事件D表示“两个月内被投诉2次”所以所以两个月中,一个月被投诉2次,另一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010届高考数学总复习五年高考三年联考精品题库第十三章 概率与统计doc-高中数学 2010 高考 数学 复习 年高 三年 联考 精品 题库 第十三 概率 统计 doc 高中数学
链接地址:https://www.taowenge.com/p-41788773.html
限制150内