2011年高考数学 一轮复习第二章第11节 变化率与导数、导数的计算 doc--高中数学 .doc
《2011年高考数学 一轮复习第二章第11节 变化率与导数、导数的计算 doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2011年高考数学 一轮复习第二章第11节 变化率与导数、导数的计算 doc--高中数学 .doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网第二章 第十一节 变化率与导数、导数的计算题组一导数的概念及运算1.设f(x)xlnx,若f(x0)2,则x0 ()Ae2 Be C. Dln2解析:f(x)x1lnx1lnx,由1lnx02,知x0e.答案:B2设f0(x)cosx,f1(x)f0(x),f2(x)f1(x),fn1(x)fn(x),nN,则f2010(x) ()Asinx Bsinx Ccosx Dcosx解析:f1(x)(cosx)sinx,f2(x)(sinx)cosx,f3(x)(cosx)sinx,f4(x)(sinx)cosx,由此可知fn(x)的值周期性重复出现,周期为4,故f2010(x)
2、f2(x)cosx.答案:D3(2009安徽高考)设函数f(x)x3x2tan,其中0,则导数f(1)的取值范围是 ()A2,2 B, C,2 D,2解析:f(x)sinx2cosx,f(1)sincos2sin()0,sin(),1,f(1),2答案:D4设f(x)(axb)sinx(cxd)cosx,试确定常数a,b,c,d,使得f(x)xcosx.解:由已知f(x)(axb)sinx(cxd)cosx(axb)sinx(cxd)cosx(axb)sinx(axb)(sinx)(cxd)cosx(cxd)(cosx)asinx(axb)cosxccosx(cxd)sinx(acxd)sin
3、x(axbc)cosx.又f(x)xcosx,必须有即解得ad1,bc0.题组二导数的几何意义5.(2009辽宁高考)曲线y在点(1,1)处的切线方程为 ()Ayx2 By3x2Cy2x3 Dy2x1解析:y(),ky|x12.l:y12(x1),即y2x1.答案:D6(2010福建四地六校联考)下列曲线的所有切线构成的集合中,存在无数对互相垂直的切线的曲线是()Af(x)ex Bf(x)x3 Cf(x)lnx Df(x)sinx解析:设切点的横坐标为x1,x2则存在无数对互相垂直的切线,即f(x1)f(x2)1有无数对x1,x2使之成立对于A由f(x)ex0,所以不存在f(x1)f(x2)1
4、成立;对于B由于f(x)3x20,所以也不存在f(x1)f(x2)1成立;对于C由于f(x)lnx的定义域为(0,),f(x)0,对于Df(x)cosx,f(x1)f(x2)cosx1cosx2,当x12k,x2(2k1),kZ,f(x1)f(x2)1恒成立答案:D7(2009宁夏、海南高考)曲线yxex2x1在点(0,1)处的切线方程为_解析:yexxex2,y|x03,切线方程为y13(x0),y3x1.答案:y3x18(2009福建高考)若曲线f(x)ax2lnx存在垂直于y轴的切线,则实数a的取值范围是_解析:f(x)2ax.f(x)存在垂直于y轴的切线,f(x)0有解,即2ax0有解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011年高考数学 一轮复习 第二章 第11节 变化率与导数、导数的计算 doc-高中数学 2011 年高 数学 一轮 复习 第二 11 变化 导数 计算 doc 高中数学
链接地址:https://www.taowenge.com/p-41798810.html
限制150内