24.1《圆》教案(2套)(人教新课标九年级上)-24.1 圆 教案 (2)doc--初中数学 .doc
《24.1《圆》教案(2套)(人教新课标九年级上)-24.1 圆 教案 (2)doc--初中数学 .doc》由会员分享,可在线阅读,更多相关《24.1《圆》教案(2套)(人教新课标九年级上)-24.1 圆 教案 (2)doc--初中数学 .doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费在线组卷 课件教案下载 无需注册和点数241 圆第一课时 教学内容 1圆的有关概念 2垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其它们的应用 教学目标 了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题 从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解 重难点、关键 1重点:垂径定理及其运用 2难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题 教学过程 一、复习引入 (学生活动)请同
2、学口答下面两个问题(提问一、两个同学) 1举出生活中的圆三、四个 2你能讲出形成圆的方法有多少种? 老师点评(口答):(1)如车轮、杯口、时针等(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆 二、探索新知 从以上圆的形成过程,我们可以得出: 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆固定的端点O叫做圆心,线段OA叫做半径 以点O为圆心的圆,记作“O”,读作“圆O” 学生四人一组讨论下面的两个问题: 问题1:图上各点到定点(圆心O)的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点? 老师提问几名学生并点评总结 (1)图上各
3、点到定点(圆心O)的距离都等于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆上 因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形 同时,我们又把 连接圆上任意两点的线段叫做弦,如图线段AC,AB; 经过圆心的弦叫做直径,如图24-1线段AB; 圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作”,读作“圆弧”或“弧AC”大于半圆的弧(如图所示叫做优弧,小于半圆的弧(如图所示)或叫做劣弧 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 (学生活动)请同学们回答下面两个问题 1圆是轴对称图形吗?如果是,
4、它的对称轴是什么?你能找到多少条对称轴? 2你是用什么方法解决上述问题的?与同伴进行交流 (老师点评)1圆是轴对称图形,它的对称轴是直径,我能找到无数多条直径 3我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的 因此,我们可以得到:圆是轴对称图形,其对称轴是任意一条过圆心的直线 (学生活动)请同学按下面要求完成下题:如图,AB是O的一条弦,作直径CD,使CDAB,垂足为M (1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由 (老师点评)(1)是轴对称图形,其对称轴是CD (2)AM=BM,即直径CD平分弦AB,并且平分及 这样,我们就得
5、到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧 下面我们用逻辑思维给它证明一下: 已知:直径CD、弦AB且CDAB垂足为M 求证:AM=BM,. 分析:要证AM=BM,只要证AM、BM构成的两个三角形全等因此,只要连结OA、OB或AC、BC即可证明:如图,连结OA、OB,则OA=OB在RtOAM和RtOBM中 RtOAMRtOBM AM=BM 点A和点B关于CD对称 O关于直径CD对称 当圆沿着直线CD对折时,点A与点B重合,与重合,与重合 , 进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (本题的证明作为课后练习) 例1如图,一条公路的转弯
6、处是一段圆弦(即图中,点O是的圆心,其中CD=600m,E为上一点,且OECD,垂足为F,EF=90m,求这段弯路的半径分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握 解:如图,连接OC 设弯路的半径为R,则OF=(R-90)m OECD CF=CD=600=300(m) 根据勾股定理,得:OC2=CF2+OF2 即R2=3002+(R-90)2 解得R=545 这段弯路的半径为545m 三、巩固练习 教材P86 练习 P88 练习 四、应用拓展例2有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=60m
7、,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由 分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R 解:不需要采取紧急措施 设OA=R,在RtAOC中,AC=30,CD=18 R2=302+(R-18)2 R2=900+R2-36R+324 解得R=34(m) 连接OM,设DE=x,在RtMOE中,ME=16 342=162+(34-x)2 162+342-68x+x2=342 x2-68x+256=0 解得x1=4,x2=64(不合设) DE=4 不需采取紧急措施 五、归
8、纳小结(学生归纳,老师点评) 本节课应掌握: 1圆的有关概念; 2圆是轴对称图形,任何一条直径所在直线都是它的对称轴 3垂径定理及其推论以及它们的应用 六、布置作业 1教材P94 复习巩固1、2、3 2车轮为什么是圆的呢? 3垂径定理推论的证明 4选用课时作业设计第一课时作业设计一、选择题1如图1,如果AB为O的直径,弦CDAB,垂足为E,那么下列结论中,错误的是( )ACE=DE B CBAC=BAD DACAD (1) (2) (3)2如图2,O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是( )A4 B6 C7 D83如图3,在O中,P是弦AB的中点,CD是过点P的直径,
9、则下列结论中不正确的是( )AABCD BAOB=4ACD C DPO=PD二、填空题1如图4,AB为O直径,E是中点,OE交BC于点D,BD=3,AB=10,则AC=_ (4) (5)2P为O内一点,OP=3cm,O半径为5cm,则经过P点的最短弦长为_;最长弦长为_3如图5,OE、OF分别为O的弦AB、CD的弦心距,如果OE=OF,那么_(只需写一个正确的结论)三、综合提高题1如图24-11,AB为O的直径,CD为弦,过C、D分别作CNCD、DMCD,分别交AB于N、M,请问图中的AN与BM是否相等,说明理由2如图,O直径AB和弦CD相交于点E,AE=2,EB=6,DEB=30,求弦CD长
10、3(开放题)AB是O的直径,AC、AD是O的两弦,已知AB=16,AC=8,AD=8,求DAC的度数答案:一、1D 2D 3D二、18 28 10 3AB=CD三、1AN=BM 理由:过点O作OECD于点E,则CE=DE,且CNOEDM ON=OM,OA-ON=OB-OM,AN=BM2过O作OFCD于F,如右图所示AE=2,EB=6,OE=2,EF=,OF=1,连结OD,在RtODF中,42=12+DF2,DF=,CD=2_B_A_C_O_D3(1)AC、AD在AB的同旁,如右图所示: AB=16,AC=8,AD=8, AC=(AB),CAB=60, 同理可得DAB=30, DAC=30 (2
11、)AC、AD在AB的异旁,同理可得:DAC=60+30=9024.1 圆(第2课时) 教学内容 1圆心角的概念 2有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 3定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等 教学目标 了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用 通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两
12、个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题 重难点、关键 1重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用 2难点与关键:探索定理和推导及其应用 教学过程 一、复习引入 (学生活动)请同学们完成下题已知OAB,如图所示,作出绕O点旋转30、45、60的图形 老师点评:绕O点旋转,O点就是固定点,旋转30,就是旋转角BOB=30 二、探索新知如图所示,AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角 (学生活动)请同学们按下列要求作图并回答问题:如图所示的O中,分别作相等的圆心角AOB和A
13、OB将圆心角AOB绕圆心O旋转到AOB的位置,你能发现哪些等量关系?为什么? =,AB=AB 理由:半径OA与OA重合,且AOB=AOB 半径OB与OB重合 点A与点A重合,点B与点B重合 与重合,弦AB与弦AB重合 =,AB=AB 因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?请同学们现在动手作一作(学生活动)老师点评:如图1,在O和O中,分别作相等的圆心角AOB和AOB得到如图2,滚动一个圆,使O与O重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与OA重合 (1) (2) 你能发现哪些等量关系?说一说你的理由?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 24.1圆教案2套人教新课标九年级上-24.1 教案 2doc-初中数学 24.1 新课 九年级 doc 初中 数学
链接地址:https://www.taowenge.com/p-41804786.html
限制150内