2010届大纲版数学高考名师一轮复习教案9.4二面角及平面的垂直microsoft word 文档doc--高中数学 .doc
《2010届大纲版数学高考名师一轮复习教案9.4二面角及平面的垂直microsoft word 文档doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010届大纲版数学高考名师一轮复习教案9.4二面角及平面的垂直microsoft word 文档doc--高中数学 .doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网94二面角及平面的垂直一、明确复习目标1.掌握两平面垂直的判定和性质,并用以解决有关问题2.掌握二面角及其平面角的概念,能灵活作出二面角的平面角,并能求出大小3在研究垂直和求二面角的问题时,要能灵活运用三垂线定理及逆定理二建构知识网络1.二面角、平面角的定义;范围:.两个平面相交成900二面角时,叫两个平面垂直.2判定两平面垂直的方法:利用“面面垂直的定义”,即证“两平面所成的二面角是直二面角;利用“面面垂直的判定定理”,即由“线面垂直面面垂直”.3二面角的平面角的作法:直接利用定义;利用三垂线定理及其逆定理; 作棱的垂面.三、双基题目练练手1.在三棱锥ABCD中,若ADB
2、C,BDAD,BCD是锐角三角形,那么必有( )A.平面ABD平面ADCB.平面ABD平面ABCC.平面ADC平面BCDD.平面ABC平面BCD2.设、是两条不同的直线,、是两个不同的平面.考查下列命题,其中正确的命题是 ( ) 3.设两个平面、,直线l ,下列三个条件: l ; l;,若以其中两个作为条件,另一个作为结论,可构成正确命题的个数是 ( )A.3 B.2 C. 1 D. 04.P为ABC所在平面外的一点,则点P在此三角形所在平面上的射影是ABC垂心的充分必要条件是A.PA=PB=PC B.PABC,PBAC ( )C.点P到ABC三边所在直线距离相等D.平面PAB、平面PBC、平
3、面PAC与ABC所在的平面所成的角相等5如图在四棱锥P-ABCD中,PA底面ABCD,底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD.6.夹在互相垂直的两个平面之间长为2a的线段和这两个平面所成的角分别为45和30,过这条线段的两个端点分别向这两个平面的交线作垂线,则两垂足间的距离为_. 答案提示:1-4.CBBB; 5. MDPC或MBPC ; 6. a四、典型例题做一做【例1】 如下图,在三棱锥SABC中,SA平面ABC,平面SAB平面SBC.(1)求证:ABBC;(2)若设二面角SBCA为45,SA=BC,求二面角ASCB的大小. ABCSEH证明(1):作AH
4、SB于H, 平面SAB平面SBC, AH平面SBC. ,又SA平面ABC, SABC.SASB=S,BC平面SAB. BCAB.解(2):SA平面ABC,SABC.平面SABBC,SBA为二面角SBCA的平面角. SBA=45.设SA=AB=BC=a.作AESC于E,连结EH.由(1)知AH平面SBC, AE在面SBC内的射影EHSC,AEH为二面角ASCB的平面角,AH=a,AC=a,SC=a,AE=a,sinAEH=,二面角ASCB为60.【例2】 已知正三棱柱ABCA1B1C1,若过面对角线AB1且与另一面对角线BC1平行的平面交上底面A1B1C1的一边A1C1于点D.(1)确定D的位置
5、,并证明你的结论;(2)证明:平面AB1D平面AA1D;(3)若ABAA1=,求平面AB1D与平面AB1A1所成角的大小. C1_B1_A1_BCA分析:本题结论不定,是“开放性”的,点D位置的确定如果仅凭已知条件推理难以得出.由于AB1与BC1这两条面对角线是相邻二侧面上的异面直线,于是可考虑将BC1沿BA平行移动,BC1取AE1位置,则平面AB1E1一定平行BC1,问题可以解决.(1)解:如下图,将正三棱柱ABCA1B1C1补成一直平行六面体ABCEA1B1C1E1,由AE1BC1,AE1平面AB1E1,知BC1平面AB1E1,故平面AB1E1应为所求平面,此时平面AB1E1交A1C1于点
6、D,由平行四边形对角线互相平行性质知,D为A1C1的中点. AE1B1C1BCEDA1(2)证明:连结B1D,则B1DA1C1;从直三棱柱定义知AA1底面A1B1C1,AA1B1D, 又A1DAA1=A1,B1D平面AA1D,又B1D平面AB1D,平面AB1D平面AA1D.(3)解:因为平面AB1D平面AA1D=AD,所以过A1作A1HAD于点H.作HFAB1于点F,连结A1F,从三垂线定理知A1FAB1.故A1FH是二面角A1AB1D的平面角.设侧棱AA1=1,侧棱AB=.于是AB1= .在RtAB1A1中,A1F=,在RtAA1D中,AA1=1,A1D=A1C1=,AD= .A1H=.在R
7、tA1FH中,sinA1FH=,A1FH=45.因此知平面AB1D与平面AB1A1所成角为450或1350.【例3】在四棱锥P-ABCD中,已知ABCD为矩形,PA 平面ABCD,设PA=AB=1,BC=2,求二面角B-PC-D的大小.解析1.定义法过D作DE PC于E,过E作EF PC,交BC于F,连接FD,则 是所求二面角B-PC-D的平面角.求解二面角B-PC-D的大小,只需解DEF即可.所求角为BDPCAEF解析一解析2.垂面法易证面PAB面PBC,过A作AM BP于M,显然AM 面PBC,从而有AM PC,同法可得AN PC,再由AM与AN相交与A得PC 面AMN.设面AMN交PC于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010届大纲版数学高考名师一轮复习教案9.4二面角及平面的垂直microsoft word 文档doc-高中数学 2010 大纲
链接地址:https://www.taowenge.com/p-41828196.html
限制150内