28.2 《解直角三角形》教案(人教新课标九年级下)doc--初中数学 .doc
《28.2 《解直角三角形》教案(人教新课标九年级下)doc--初中数学 .doc》由会员分享,可在线阅读,更多相关《28.2 《解直角三角形》教案(人教新课标九年级下)doc--初中数学 .doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费在线组卷 课件教案下载 无需注册和点数课题 28.2 解直角三角形(一)一、教学目标1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力3.渗透数形结合的数学思想,培养学生良好的学习习惯二、教学重点、难点1重点:直角三角形的解法2难点:三角函数在解直角三角形中的灵活运用三、教学步骤(一)复习引入 1在三角形中共有几个元素?2直角三角形ABC中,C=90,a、b、c、A、B这五个元素间有哪些等量关系呢?(1)边角之间关
2、系如果用表示直角三角形的一个锐角,那上述式子就可以写成.(2)三边之间关系a2 +b2 =c2 (勾股定理) (3)锐角之间关系A+B=90以上三点正是解直角三角形的依据,通过复习,使学生便于应用(二)教学过程1我们已掌握RtABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情2教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形
3、?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)3例题例 1在ABC中,C为直角,A、B、C所对的边分别为a、b、c,且b=,a=,解这个三角形解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想其次,教师组织学生比较各种方法中哪些较好,选一种板演解 tanA=C=2b=例 2在RtABC中, B =35,b=20,解这个三角形引导学生思考分析完成后,让学生独立完成在学生独立完成之后,选出最好方法,教师板书 完成之后引导学生小结“已知一边一角
4、,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底注意:例1中的b和例2中的c都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。4巩固练习P91说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器但无论是否使用计算器,都必须写出解直角三角形的整个过程要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯(四)总结与扩展1请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边)
5、,就可以求出另三个元素2出示图表,请学生完成abcAB123b=acotA4b=atanB56a=btanA7a=bcotB8a=csinAb=ccosA9a=ccosBb=csinB10不可求不可求不可求注:上表中“”表示已知。 四、布置作业课题 28.2 解直角三角形(二)一、教学目标1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决2、逐步培养学生分析问题、解决问题的能力3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识二、教学重点、难点重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问
6、题解决难点:实际问题转化成数学模型三、教学过程(一)复习引入1直角三角形中除直角外五个元素之间具有什么关系?请学生口答2、在中RtABC中已知a=12 ,c=13 求角B应该用哪个关系?请计算出来。(二)实践探索要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角等于多少(精确到1o)这时人是否能够安全使用这个梯子 引导学生先把实际问题转化成数学模型然后分析提出的问题是数学模型中的什么量在这个数学模型中可用学到的什么
7、知识来求未知量? 几分钟后,让一个完成较好的同学示范。(三)教学互动例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0. 1 km)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.如图,O表示地球,点F是飞船的位置,FQ是O的切线,切点Q是从飞船观测地球时的最远点. 弧PQ的长就是地面上P, Q两点间的距离.为计算弧PQ的长需先求出(即)
8、解:在上图中,FQ是O的切线,是直角三角形, 弧PQ的长为 由此可知,当飞船在p点正上方时,从飞船观测地球时的最远点距离P点约2 009. 6 km. (四)巩固再现P93 1,P96 1四、布置作业P96 2,3课题 28.2 解直角三角形(三)一、教学目标1、使学生了解什么是仰角和俯角2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法3、巩固用三角函数有关知识解决问题,学会解决观测问题二、教学重点、难点重点:用三角函数有关知识解决观测问题难点:学会准确分析问题并将实际问题转化成数学模型三、教学过程(一)复习引入 平时我们观察物体时,我们的视线相对于水平线来说可有几种情况
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解直角三角形 28.2 解直角三角形教案人教新课标九年级下doc-初中数学 直角三角形 教案 新课 九年级 doc 初中 数学
限制150内