内蒙古自治区赤峰二中2019_2020学年高二数学上学期10月月考试题理含解析.doc
《内蒙古自治区赤峰二中2019_2020学年高二数学上学期10月月考试题理含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古自治区赤峰二中2019_2020学年高二数学上学期10月月考试题理含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、内蒙古自治区赤峰二中2019-2020学年高二数学上学期10月月考试题 理(含解析)一、选择题:(本大题共12小题,每小题5分,共60分.在每个小题列出的四个选项中,选出符合题目要求的一项.)1.命题“若,则”以及它的逆命题、否命题中,真命题的个数为()A. B. C. D. 0【答案】B【解析】【分析】根据原命题与逆否命题同真假,逆命题与否命题同真假,只需判断原命题和逆命题的真假就可以得到真命题的个数了.【详解】因为原命题”若,则”是假命题;所以其逆否命题也是假命题,因为逆命题”若,则”是真命题.所以否命题也是真命题.所以命题“若,则”以及它的逆命题、否命题中,真命题的个数为2个.故选B.【
2、点睛】本题考查了四种命题,属基础题.2.已知命题,命题.若命题是的必要不充分条件,则的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】首先求得集合A,B,然后结合题意和恒成立的条件可得实数a的取值范围.【详解】由题意可得:命题:,命题:,命题是的必要不充分条件,故不等式,即在区间上恒成立,据此可知:的取值范围是.故选:D.【点睛】本题主要考查集合的表示,由必要不充分条件求参数的取值范围等知识,意在考查学生的转化能力和计算求解能力.3.方程(3x-y+1)(y-)=0表示的曲线为()A. 一条线段和半个圆B. 一条线段和一个圆C. 一条线段和半个椭圆D. 两条线段【答案】A【解
3、析】【分析】由原方程可得y=(-1x1,)或3x-y+1=0(-1x1),进一步求出轨迹得答案【详解】由方程(3x-y+1)(y-)=0得y=()或3x-y+1=0,且满足-1x1,即或3x-y+1=0(-1x1),方程(3x-y+1)(y-)=0表示一条线段和半个圆故选:A【点睛】本题考查曲线的方程和方程的曲线概念,关键是注意根式有意义的范围,是中档题4.若双曲线的离心率大于2,则该双曲线的虚轴长的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】根据离心率大于2得到不等式:计算得到虚轴长的范围.【详解】,故答案选C【点睛】本题考查了双曲线的离心率,虚轴长,意在考查学生的计算
4、能力.5.平行四边形ABCD的顶点A,C的坐标分别为(3,1),(2,3),顶点D在直线3xy10上移动,则顶点B的轨迹方程为()A. 3xy200B. 3xy100C. 3xy120D. 3xy90【答案】A【解析】【分析】设出和的坐标,把的坐标用的坐标表示,代入直线方程后即可得到结论.【详解】设点坐标为,取直线上点的坐标为,向量,由, 得,即,因为,所以,整理得,故选A.【点睛】本题主要考查逆代法求轨迹方程,属于中档题.求轨迹方程的常见方法有:直接法,设出动点的坐标,根据题意列出关于的等式即可;定义法,根据题意动点符合已知曲线的定义,直接求出方程;参数法,把分别用第三个变量表示,消去参数即
5、可;逆代法,将代入.6.已知椭圆,点为左焦点,点为下顶点,平行于的直线交椭圆于两点,且的中点为,则椭圆的离心率为()A. B. C. D. 【答案】A【解析】【分析】设A(,),B(,),因为A、B在椭圆上将两式相减可得直线AB的斜率与直线OM的斜率的关系,建立关于a,b,c的方程,从而求出所求;【详解】设A(,),B(,),又的中点为,则又因为A、B在椭圆上所以两式相减,得:,,平方可得, =,,故选A.【点睛】本题主要考查了点差法求斜率,以及椭圆的几何性质,同时考查了运算求解的能力,属于中档题7.已知双曲线,四点,中恰有三点在双曲线上,则该双曲线的离心率为( )A. B. C. D. 【答
6、案】C【解析】分析:先判断,在双曲线上,则一定不在双曲线上,则在双曲线上,则可得,求出 ,再根据离心率公式计算即可详解:根据双曲线的性质可得,在双曲线上,则一定不在双曲线上,则在双曲线上,解得 故选C点睛:本题考查了双曲线的简单性质和离心率的求法,属于基础题8.已知点为双曲线 右支上一点,分别为左右焦点,若双曲线的离心率为,的内切圆圆心为,半径为2,若,则的值是( )A. 2B. C. D. 6【答案】C【解析】【分析】利用的内切圆圆心为,半径为2 ,由,结合双曲线的定义求出,通过离心率求出,然后求解即可.【详解】点为双曲线右支上一点,分别为左右焦点,的内切圆圆心为,半径为2 ,因为,所以,可
7、得,即,双曲线的离心率为,可得,则,故选C.【点睛】本题主要考查双曲线的定义、双曲线的离心率以及双曲线的几何性质,属于中档题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.9.已知,椭圆的方程为,双曲线的方程为,与的离心率之积为,则的渐近线方程为 )A. B. C. D. 【答案】A【解析】【分析】利用离心率乘积为,利用将离心率表示出来,构造一个关于的方程,然后解出的值,从而得到双曲线渐近线方程。【详解】设椭圆和双曲线的半焦距为,则,所以,所以双曲线
8、的渐近线方程为:,即,故选A.【点睛】本题考查椭圆与双曲线的离心率即双曲线的渐近线方程求离心率直接构造出关于的方程从而求出e,求双曲线渐近线方程则只需构造的方程,从而解出,便可得到渐近线方程。10.已知椭圆,直线与椭圆相交于,两点,若椭圆上存在异于,两点的点使得,则离心率的取值范围为( )A. B. C. D. 【答案】B【解析】【分析】设P(),由椭圆的对称性设求的值得a,b的不等式求e即可【详解】设P(),直线y=x过原点,由椭圆的对称性设又两式做差,代入上式得,故所以故选:B【点睛】本题考查双曲线的简单几何性质,曲线对称性的考查,考查计算能力,是中档题11.如图,点在以为焦点的双曲线上,
9、过作轴的垂线,垂足为,若四边形为菱形,则该双曲线的离心率为( )A. B. 2C. D. 【答案】C【解析】【分析】连接,可得三角形为等边三角形,过点P作PHx轴于点H, 则=60,可得|=2c, , |=, |=,连接,利用双曲线的性质, 2a=|-|=-2c=,可得离心率e.【详解】解:由题意得:四边形的边长为2c, 连接,由对称性可知, |=|=2c,则三角形为等边三角形.过点P作PHx轴于点H, 则=60,|=2c,在直角三角形中, |=, |=,则P(2c,), 连接, 则|=.由双曲线的定义知,2a=|-|=-2c=,所以双曲线的离心率为e=,故选C.【点睛】本题主要考查双曲线的相
10、关性质及菱形的性质,灵活运用双曲线的性质是解题的关键.12.设椭圆与双曲线在第一象限的交点为为其共同的左右的焦点,且,若椭圆和双曲线的离心率分别为,则的取值范围为A. B. C. D. 【答案】D【解析】【分析】依题意有m24a2+4,即m2a2+8,写出,再根据|TF1|4,求出a的范围即可【详解】依题意有m24a2+4,即m2a2+8, ,解得 .故选:D【点睛】本题主要考查了共焦点的椭圆与双曲线的几何性质,也考查了计算能力,属于中档题二、填空题:(本大题共4小题,每小题5分,共20分)13.设分别是椭圆的左、右焦点,为椭圆上一点,是的中点,则点到椭圆左焦点的距离为_【答案】4【解析】【分
11、析】利用是的中位线求得,再利用椭圆定义列方程即可求解。【详解】如图,是的中位线,由得:,由椭圆得:,即:又,解得:。【点睛】本题主要考查了三角形中位线结论及椭圆的定义、标准方程,属于基础题。14.设、分别是双曲线的左、右焦点,若点在此双曲线上,且,则=_【答案】3或7【解析】【分析】由点在双曲线上,由双曲线的定义可知,根据,代入即可求解.【详解】由双曲线的方程,可得,因为点在双曲线上,由双曲线的定义可知,因为,代入解得或.【点睛】本题主要考查了双曲线的定义的应用,其中解答中熟记双曲线的定义,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.15.函数 ( ), ,对 , ,使 成
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 内蒙古自治区 赤峰 2019 _2020 学年 数学 上学 10 月月 考试题 解析
限制150内