《计量经济学》多媒体教学课件-自相关.PPT
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《《计量经济学》多媒体教学课件-自相关.PPT》由会员分享,可在线阅读,更多相关《《计量经济学》多媒体教学课件-自相关.PPT(81页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1,计量经济学,第六章 自 相 关,2,引子:t检验和F检验一定就可靠吗?,研究居民储蓄存款 与居民收入 的关系: 用普通最小二乘法估计其参数,结果为 (1.8690) (0.0055) = (14.9343) (64.2069),3,检验结果表明:回归系数的标准误差非常小,t 统计量较大,说明居民收入 对居民储蓄存款 的影响非常显著。同时可决系数也非常高,F统计量为4122.531,也表明模型异常的显著。 但此估计结果可能是虚假的,t统计量和F统计量都被虚假地夸大,因此所得结果是不可信的。为什么?,4,本章讨论四个问题: 什么是自相关 自相关的后果 自相关的检验 自相关性的补救,第六章 自相
2、关,5,第一节 什么是自相关,本节基本内容: 什么是自相关 自相关产生的原因 自相关的表现形式,6,第一节 什么是自相关,一、自相关的概念 自相关(auto correlation),又称序列相关(serial correlation)是指总体回归模型的随机误差项之间存在相关关系。即不同观测点上的误差项彼此相关。,7,一阶自相关系数,自相关系数 的定义与普通相关系的公式形式相同,的取值范围为,式(6.1)中 是 滞后一期的随机误差项。 因此,将式(6.1)计算的自相关系数 称为一阶自相关系数。,8,二、自相关产生的原因,9,自相关现象大多出现在时间序列数据中,而经济系统的经济行为都具有时间上的
3、惯性。 如GDP、价格、就业等经济指标都会随经济系统的周期而波动。例如,在经济高涨时期,较高的经济增长率会持续一段时间,而在经济衰退期,较高的失业率也会持续一段时间,这种现象就会表现为经济指标的自相关现象。,原因1经济系统的惯性,10,滞后效应是指某一指标对另一指标的影响不仅限于当期而是延续若干期。由此带来变量的自相关。 例如,居民当期可支配收入的增加,不会使居民的消费水平在当期就达到应有水平,而是要经过若干期才能达到。因为人的消费观念的改变客观上存在自适应期。,原因2 经济活动的滞后效应,11,因为某些原因对数据进行了修整和内插处理,在这样的数据序列中就会有自相关。 例如,将月度数据调整为季
4、度数据,由于采用了加合处理,修匀了月度数据的波动,使季度数据具有平滑性,这种平滑性产生自相关。对缺失的历史资料,采用特定统计方法进行内插处理,使得数据前后期相关,产生了自相关。,原因3数据处理造成的相关,12,原因4蛛网现象,13,如果模型中省略了某些重要的解释变量或者模型函数形式不正确,都会产生系统误差,这种误差存在于随机误差项中,从而带来了自相关。由于该现象是由于设定失误造成的自相关,因此,也称其为虚假自相关。,原因5模型设定偏误,14,例如,应该用两个解释变量,即: 而建立模型时,模型设定为: 则 对 的影响便归入随机误差项 中,由于 在不同观测点上是相关的,这就造成了 在不同观测点是相
5、关的,呈现出系统模式,此时 是自相关的。,15,模型形式设定偏误也会导致自相关现象。如将 形成本曲线设定为线性成本曲线,则必定会导致自相关。由设定偏误产生的自相关是一种虚假自相关,可通过改变模型设定予以消除。 自相关关系主要存在于时间序列数据中,但是在横截面数据中,也可能会出现自相关,通常称其为空间自相关(Spatial auto correlation)。,16,例如,在消费行为中,一个家庭、一个地区的消费行为可能会影响另外一些家庭和另外一些地区,就是说不同观测点的随机误差项可能是相关的。 多数经济时间序列在较长时间内都表现为上升或下降的超势,因此大多表现为正自相关。但就自相关本身而言是可以
6、为正相关也可以为负相关。,17,三、自相关的表现形式,自相关的性质可以用自相关系数的符号判断 即 为负相关, 为正相 关。 当 接近1时,表示相关的程度很高。 自相关是 序列自身的相关,因随机误差项的关联形式不同而具有不同的自相关形式。 自相关多出现在时间序列数据中。,18,对于样本观测期为 的时间序列数据,可得到总体回归模型(PRF)的随机项为 ,如果自相关形式为 其中 为自相关系数, 为经典误差项,即 则此式称为一阶自回归模式,记为 。因为模型中 是 滞后一期的值,因此称为一阶。此式中的 也称为一阶自相关系数。,自相关的形式,19,如果式中的随机误差项 不是经典误差项,即其中包含有 的成份
7、,如包含有 则需将 显含在回归模型中,其为 其中, 为一阶自相关系数, 为二阶自相关系数, 是经典误差项。此式称为二阶自回归模式,记为 。,20,一般地,如果 之间的关系为 其中, 为经典误差项。则称此式为 阶自回归模式,记为 。 在经济计量分析中,通常采用一阶自回归形式,即假定自回归形式为一阶自回归 。,21,第二节 自相关的后果,本节基本内容: 一阶自回归形式的性质 自相关对参数估计的影响 自相关对模型检验的影响 自相关对模型预测的影响,22,对于一元线性回归模型: 假定随机误差项 存在一阶自相关: 其中, 为现期随机误差, 为前期随机误差。 是经典误差项,满足零均值 ,同方差 ,无自相关
8、 的假定。,一、一阶自回归形式的性质,23,将随机误差项 的各期滞后值: 逐次代入可得: 这表明随机误差项 可表示为独立同分布的随机误差序列 的加权和,权数分别为 。当 时,这些权数是随时间推移而呈几何衰减的; 而当 时,这些权数是随时间推移而交错振荡衰减的。,24,25,26,以此类推,可得 : 这些协方差分别称为随机误差项 的一阶自协方差、二阶自协方差和 阶自协方差,27,二、对参数估计的影响,在有自相关的条件下,仍然使用普通最小二乘法将低估估计量 的方差 并且 将低估真实的,28,29,例如,一元回归中,30,当存在自相关时,普通最小二乘估计量不再是最佳线性无估计量,即它在线性无偏估计量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量经济学 计量 经济学 多媒体 教学 课件 相关
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内