2021年福建省高考新课标I卷数学真题word档【详细答案解析】.docx
《2021年福建省高考新课标I卷数学真题word档【详细答案解析】.docx》由会员分享,可在线阅读,更多相关《2021年福建省高考新课标I卷数学真题word档【详细答案解析】.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021年普通高等学校招生全国统一考试(福建卷)数学答案本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名考生号考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以
2、上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D. 【答案】B【解析】【分析】利用交集的定义可求.【详解】由题设有,故选:B .2. 已知,则( )A. B. C. D. 【答案】C【解析】【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为,故,故故选:C.3. 已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A. B. C. D. 【答案】B【解析】【分析】设圆锥的母线长为,根据圆锥底面
3、圆的周长等于扇形的弧长可求得的值,即为所求.【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.4. 下列区间中,函数单调递增的区间是( )A. B. C. D. 【答案】A【解析】【分析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数5. 已知
4、,是椭圆:的两个焦点,点在上,则的最大值为( )A. 13B. 12C. 9D. 6【答案】C【解析】【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案【详解】由题,则,所以(当且仅当时,等号成立)故选:C【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到6. 若,则( )A. B. C. D. 【答案】C【解析】【分析】将式子进行齐次化处理,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论7. 若过点可以作曲线的两条切线,则( )A. B. C.
5、D. 【答案】D【解析】【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果【详解】在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,此时函数单调递增,当时,此时函数单调递减,所以,由题意可知,直线与曲线的图象有两个交点,则,当时,当时,作出函数的图象如下图所示:由图可知,当时,直线与曲线的图象有两个交点.故选:D.【点睛】数形结合是解决数学问题常用且有效的方法8. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表
6、示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立【答案】B【解析】【分析】根据独立事件概率关系逐一判断【详解】 ,故选:B【点睛】判断事件是否独立,先计算对应概率,再判断是否成立二选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据,由这组数据得到新样本数据,其中(为非零常数,则( )A. 两组样本数据的样本平均数相同B. 两组样本
7、数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样数据的样本极差相同【答案】CD【解析】【分析】A、C利用两组数据的线性关系有、,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.【详解】A:且,故平均数不相同,错误;B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;C:,故方差相同,正确;D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;故选:CD10. 已知为坐标原点,点,则( )A B. C. D. 【答案】AC【解析】【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数
8、量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A:,所以,故,正确;B:,所以,同理,故不一定相等,错误;C:由题意得:,正确;D:由题意得:,错误;故选:AC11. 已知点在圆上,点、,则( )A. 点到直线的距离小于B. 点到直线的距离大于C. 当最小时,D. 当最大时,【答案】ACD【解析】【分析】计算出圆心到直线的距离,可得出点到直线的距离的取值范围,可判断AB选项的正误;分析可知,当最大或最小时,与圆相切,利用勾股定理可判断CD选项的正误.【详解】圆的圆心为,半径为,直线的方程为,即,圆心到直线的距离为,所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;如下
9、图所示:当最大或最小时,与圆相切,连接、,可知,由勾股定理可得,CD选项正确.故选:ACD.【点睛】结论点睛:若直线与半径为圆相离,圆心到直线的距离为,则圆上一点到直线的距离的取值范围是.12. 在正三棱柱中,点满足,其中,则( )A. 当时,的周长为定值B. 当时,三棱锥的体积为定值C. 当时,有且仅有一个点,使得D. 当时,有且仅有一个点,使得平面【答案】BD【解析】【分析】对于A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B,将点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C,考虑借助向量平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个
10、数;对于D,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数【详解】易知,点在矩形内部(含边界)对于A,当时,即此时线段,周长不是定值,故A错误;对于B,当时,故此时点轨迹为线段,而,平面,则有到平面的距离为定值,所以其体积为定值,故B正确对于C,当时,取,中点分别为,则,所以点轨迹为线段,不妨建系解决,建立空间直角坐标系如图,则,所以或故均满足,故C错误;对于D,当时,取,中点为,所以点轨迹为线段设,因为,所以,所以,此时与重合,故D正确故选:BD【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内三填空题:本题共4小题,每小题5分,共20分.1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 详细答案解析 2021 福建省 高考 新课 数学 word 详细 答案 解析
限制150内