卡尔曼滤波算法与matlab实现.doc
《卡尔曼滤波算法与matlab实现.doc》由会员分享,可在线阅读,更多相关《卡尔曼滤波算法与matlab实现.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 . . . . 一个应用实例详解卡尔曼滤波与其算法实现标签:算法filtermatlabalgorithm优化工作2012-05-14 10:4875511人阅读评论(25)收藏举报分类:数据结构与其算法(4)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的
2、温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。假如我们要估算k
3、时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。由于我们用于估算k时刻的实际温度有两个温度值,分别是23 度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance(协方差)来判断。因为 Kg2=52
4、/(52+42),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。现在我们已经得到k时刻的最优温度值了,下一步就是要进入 k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56 度)的偏差。算法如下:(1-Kg)*52)0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入 k+1时刻以后k时刻估算出的最优
5、温度值的偏差(对应于上面的3)。就是这样,卡尔曼滤波器就不断的把 covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!下面就要言归正传,讨论真正工程系统上的卡尔曼。3 卡尔曼滤波器算法(The Kalman Filter Algorithm)在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉与一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配
6、(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V
7、(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) . (1)式(1)中,X(
8、k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。到现在为止,我们的系统结果已经更新了,可是,对应于 X(k|k-1)的covariance(协方差)还没更新。我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的 covariance,A表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统
9、的预测。现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1) (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H / (H P(k|k-1) H + R) (4)到现在为止,我们已经得到了k状态下最优的估算值 X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程完毕,我们还要更新k状态下X(k|k)的covariance:P(k|k)=(I-Kg(k) H)P(k|k-1) (5)其
10、中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。下面,用Matlab程序举一个实际运行的例子。4 简单例子(A Simple Example)这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。根据第二节的描述,把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非常地精确。我
11、们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:X(k|k-1)=X(k-1|k-1) . (6)式子(2)可以改成:P(k|k-1)=P(k-1|k-1) +Q (7)因为测量的值是温度计的,跟温度直接对应,所以H=1。式子 3,4,5可以改成以下:X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1) (8)Kg(k)= P(k|k-1) / (P(k|k-1) + R) (9)P(k|k)=(1-Kg(k))P(k|k-1) (10)现在我们模拟一组测量值作为输入。假设房间的真实温度为25 度,我模拟了200个测量
12、值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。但是对于 P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。我选了X(0|0)=1 度,P(0|0)=10。该系统的真实温度为25度,图中用黑线表示。图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。clearN=200;w(1)=0;w=rand
13、n(1,N)x(1)=0;a=1;for k=2:N;x(k)=a*x(k-1)+w(k-1);endV=randn(1,N);q1=std(V);Rvv=q1.2;q2=std(x);R#=q2.2;q3=std(w);Rww=q3.2;c=0.2;Y=c*x+V;p(1)=0;s(1)=0;for t=2:N;p1(t)=a.2*p(t-1)+Rww;b(t)=c*p1(t)/(c.2*p1(t)+Rvv);s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1);p(t)=p1(t)-c*b(t)*p1(t);endt=1:N;plot(t,s,r,t,Y,g,t,x,b)
14、;用matlab做的kalman滤波程序,已通过测试还有下面一个 Matlab源程序,显示效果更好。clearclc;N=300;CON = 25;%房间温度,假定温度是恒定的%kalman filter%x = zeros(1,N);y = 20.5 * randn(1,N) + CON;%加过程噪声的状态输出x(1) = 1;p = 10;Q = cov(randn(1,N);%过程噪声协方差R = cov(randn(1,N);%观测噪声协方差for k = 2 : Nx(k) = x(k - 1);%预估计k时刻状态变量的值p = p + Q;%对应于预估值的协方差kg = p / (
15、p + R);%kalman gainx(k) = x(k) + kg * (y(k) - x(k);p = (1 - kg) * p;end%Smoothness Filter%Filter_Wid = 10;smooth_res = zeros(1,N);for i = Filter_Wid + 1 : Ntempsum = 0;for j = i - Filter_Wid : i - 1tempsum = tempsum + y(j);endsmooth_res(i) = tempsum / Filter_Wid;end% figure(1);% hist(y);t=1:N;figure
16、(1);expValue = zeros(1,N);for i = 1: NexpValue(i) = CON;endplot(t,expValue,r,t,x,g,t,y,b,t,smooth_res,k);legend(expected,estimate,measure,smooth result);axis(0 N 20 30)xlabel(Sample time);ylabel(Room Temperature);title(Smooth filter VS kalman filter);卡尔曼滤波算法-核心公式推导导论再造红旗写在最前面:这是我第一篇专栏文章,感知乎提供这么一个平台,
17、让自己能和大家分享知识。本人会不定期的开始更新文章,文章的容应该集中在汽车动力学控制,整车软件架构,控制器等方面。作为一名在校硕士,很多理解都可能不全面,不正确,大家有不同意见欢迎讨论。 !-卡尔曼滤波算法很牛逼,因为有一堆公式,有一堆符号,看起来就很牛逼啊,乍一看不懂的都很牛逼啊!本文针对卡尔曼滤波算法的核心公式进行推导,不让大家被它华丽的外表吓到。(之后计划写关于针对非线性情况的EKF和UKF,对卡尔曼滤波算法做一个全面一点的应用介绍。感兴趣的可以关注专栏。)-Okay,进入正题。这篇文章假设读者已经对卡尔曼滤波算法有初步的了解,知道它能做什么,知道它的优点,知道它很牛逼,并且你已经对它产
18、生兴趣,但不知道如何下手。首先给出一个控制理论中公式,别急着翻控制理论的书,没那么复杂:两个基本问题:1.卡尔曼滤波算法要做什么?对状态进行估计。2. 卡尔曼滤波算法怎么对状态进行估计?利用状态过程噪声和测量噪声对状态进行估计。一个状态在一个时刻点k的状态进入下一个时刻点k+1状态,会有很多外界因素的干扰,我们把干扰就叫做过程噪声,(这个词一看就是硬翻译过来的,别在意为什么叫噪声)用w表示。任何一个测量仪器,都会有误差,我们把这个误差叫做量测噪声,用v表示。回到上面那个公式,状态方程表示状态在不断的更新,从一个时刻点进入下一个时刻点,这个很好理解。关键是量测方程,它表示,我们不断更新的状态有几
19、个能用测量仪器测出来,比如,汽车运动状态参数有很多,比如速度,轮速,滑移率等,但是我们只能测量出轮速,因此量测方程要做的就是把状态参数中能量测的状态拿出来。我们始终要记得我们要做的事:我们要得到的是优化的状态量Xk。理解了上面之后就可以开始推导公式了。1.首先不考虑过程噪声对状态进行更新,很简单:举个例子,v(k)=v(k-1)+at,匀加速运动咯。2.不考虑测量噪声取出能测量的状态,也很简单:3.用测量仪器测量出来的状态值(大家可以考虑到:测量的值就是被各种噪声干扰后的真实值)减去上面不考虑噪声得到的测量值:这个值在数学上是一个定义值,叫做新息,有很多有趣的性质,感兴趣的可以自己谷歌。我们对
20、步骤暂且停一停。这个叫新息的值有什么用?由上面的过程我们可以明显看到,它反映了过程噪声和测量噪声综合对测量状态值的影响,也就是它包含了w和v的情况。回到数学层面,(不要害怕,很简单的数学应用和思考啦!)一个数值c由两部分容a和b组成,那么怎样用数学表达式来表达?一般有两种做法:I.直接相加:c=a+b;II. 用比例的方法:a=n*c,b=(1-n)*c卡尔曼采用了方法II,用比例的方法来做(其实这也是为什么叫做滤波的原因,因为滤波就是给权值之类的操作)。也就是说,过程噪声w=新息*一个比例。这样得到的过程噪声加上原来(第一步)不考虑过程噪声的状态值不就是优化值了吗? 也就是:Okay,都写到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 卡尔 滤波 算法 matlab 实现
限制150内