反三角函数与简单三角方程_(2).doc
《反三角函数与简单三角方程_(2).doc》由会员分享,可在线阅读,更多相关《反三角函数与简单三角方程_(2).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1、反三角函数:概念:把正弦函数,时的反函数,成为反正弦函数,记作.,不存在反函数.含义:表示一个角;角;.反余弦、反正切函数同理,性质如下表.名称函数式定义域值域奇偶性单调性反正弦函数增奇函数增函数反余弦函数减非奇非偶减函数反正切函数R 增奇函数增函数反余切函数R 减非奇非偶减函数其中: (1) 符号arcsinx可以理解为,上的一个角(弧度),也可以理解为区间,上的一个实数;同样符号arccosx可以理解为0,上的一个角(弧度),也可以理解为区间0,上的一个实数; (2) yarcsinx等价于sinyx, y,, yarccosx等价于cosyx, x0, , 这两个等价关系是解反三角
2、函数问题的主要依据; (3)恒等式sin(arcsinx)x, x1, 1 , cos(arccosx)x, x1, 1, arcsin(sinx)x, x,, arccos(cosx)x, x0, 的运用的条件; (4) 恒等式arcsinxarccosx, arctanxarccotx的应用。2、最简单的三角方程方程方程的解集其中:(1)含有未知数的三角函数的方程叫做三角方程。解三角方程就是确定三角方程是否有解,如果有解,求出三角方程的解集; (2)解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的基础上,熟练地写出最简单的三角方程的解; (3)要熟悉同名三角函数相等时角度之间
3、的关系在解三角方程中的作用; 如:若,则;若,则; 若,则;若,则; (4)会用数形结合的思想和函数思想进行含有参数的三角方程的解的情况和讨论。例题精讲例1. 分析与解:例4.分析与解:例5. 分析与解:例6.使成立的x的取值围是( )分析与解:该题研究不等关系,故需利用函数的单调性进行转化,又因为求x的取值围,故需把x从反三角函数式中分离出来,为此只需对arcsinx,arccosx同时取某一三角函数即可,不妨选用正弦函数。例7. 分析与解:这是三角函数的反三角运算,其方法是把角化到相应的反三角函数的值域。例8.求值:(1) (2)分析:问题的关键是能认清三角式的含义与运算次序,利用换元思想
4、转化为三角求值。解:例9.知函数(1)求函数的定义域、值域和单调区间;(2)解不等式: 解:(1)由得 又的定义域为,值域为又时,单调递减,单调递减,从而递增的单调递增区间是,同理的单调递减区间是(2)即 解不等式组得不等式的解集为简单的三角方程例1.写出以下三角方程的解集(1); (2); (3)解集x|x=(k+arctg3)2,kZ例2.求方程在上的解集.说明如何求在指定区间上的解集?(1)先求出通解,(2)让k取适当的整数,一一求出在指定区间上的特解,(3)写指定区间上的解例3.解方程解:方程化为说明可化为关于某一三角函数的二次方程,然后按二次方程解例4.解方程除以cos2x化为2tg
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 简单 三角方程
限制150内