动态无功补偿控制器的研究毕业论文.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《动态无功补偿控制器的研究毕业论文.doc》由会员分享,可在线阅读,更多相关《动态无功补偿控制器的研究毕业论文.doc(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、毕业设计(论文)动态无功补偿控制器的研究毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作与取得的成果。尽我所知,除文中特别加以标注和致的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得与其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了意。作 者 签 名:日 期:指导教师签名: 日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设
2、计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部容。作者签名: 日 期:目 录摘要1Abstract2第一章绪论31.1无功补偿的意义31.1.1 无功功率的分布对电压有决定性的影响31.1.2 无功功率在线路中的传输引起的损耗31.1.3 负荷无功功率对系统电压的影响41.2 无功补偿原理41.3无功补偿装置的发展现状51.3.1无功补偿装置的发展51.3.2 当前无功补偿装置分类61.4 低压无功补偿的改进81.5无功补偿装置的选择8第二章动态无功无偿控制器的硬件设计102.1
3、引言102.2 设计任务102.3 主电路设计122.4 主控制器芯片的选取122.5模拟信号输入处理单元142.6 LF2407DSP系统模块172.7执行单元202.8显示与通讯电路设计21第三章动态无功补偿控制器的软件设计233.1 主程序233.2 电容器投切原则243.3 中断程序253.4 串行实时时钟电路读写程序26第四章总结与展望28致29参考文献30附录3134 / 42摘 要本文主要研究了无功补偿对电网性能的改善,无功补偿装置的控制方式与原理,和控制器的硬件设计。在系统硬件上为了满足比传统的单片机控制运算速度高,实时性好的特点,采用了16位定点DSPTMS320LF2407
4、作为主控制器。在系统软件上采用晶闸管控制投切电容器,全数字化控制,全中文液晶显示界面实时显示系统运行状况,完全实现了电容器的快速,无弧,无冲击投切。在投切原则上,与常见的功率因数控制方案相比较,采用无功功率控制,避免了轻载振荡。为了实现装置应具有的功能,本文设计并制作了较为完整的控制电路与其外围设备的硬件电路。它们包括触发电路、采样电路、显示电路与通讯电路等。最后,还介绍了电网谐波对补偿装置的影响,以与装置在电网谐波含量超标时采取的保护措施。关键词 无功补偿 电力监测 数字信号处理器Abstract The paper mainly includes the followed parts: t
5、he ameliorating of the nets capability by the reactive power compensation, the control method and principle of reactive power compensation device and the hardware design of the device. The devices hardware core is the 16-bit fix point DSPTMS320LF2407 produced by TI corp ,which has many merits such a
6、s high operating speed and high real-time. The devices software core thyristor as switch that connect capacitors to main circuit, numeralization control, and Chinese menu LCD. Interface displaying systems run-time Status momentarily. It actualizes the capacitors speediness, no arc, no percussion swi
7、tching, and has superior performance. Mention of switching law, control method considering reactive power, comparing with familiar control method considering power factor, avoids oscillation on the condition of light loading. In order to realize systems required function, this paper designs and real
8、izes comparatively integrate microcomputer controlled circuit and its peripherals circuit, including triggering circuit, sampling circuit, displaying circuit and communicating circuit. At last, also points out the influence of harmonics to the compensation system, and the protect measurement in the
9、condition of high harmonics on the power net. Keywords reactive power compensation monitor of electric power wire digital signal processor (DSP)第一章 绪 论1.1无功补偿的意义电压是衡量电能质量的一个重要指标。电压质量对电网稳定运行,降低线路损耗,保证工农业安全生产,提高产品质量,降低用电损耗等都有直接影响。因此,必须对系统各节点进行监视和控制,使电压水平维持在一个正常围。电力系统的各节点无功功率平衡决定了该节点的电压水平,由于当今电力系统的用户中存
10、在着大量无功功率频繁变化的设备,如:轧钢机、电弧炉、电气化铁路等;同时用户中又有大量的对系统电压稳定性有较高要求的精密设备,如:计算机,医用设备等。因此迫切需要对系统的无功功率进行补偿。1.1.1 无功功率的分布对电压有决定性的影响在不考虑输电线的对地电容时,从节点i送到节点j的功率为P+jQ,节点i和节点j的电压分别为 和 ,节点i、j之间的支路阻抗为R十jX。 节点电压的关系为: (1-1)在超高压电力系统中,线路电抗远大于线路电阻,因而上式可写成(1-2)电压还可以写成:(1-3)式中为线路两端电压的相位角差。比较(1-2)、(1-3)可以得到:Q =(1-4)由式(1-4),正常运行时
11、输电线路两端的电压的相位角差比较小,可以认为cos=1,这样线路中传输的无功功率大小就与线路两端电压有效值之差成正比,无功功率将从节点电压高的一端流向节点电压低的一端。节点电压有效值的变化,也将使流经线路的无功功率随之发生变化。因此电力网中节点电压的变化会引起无功功率潮流的变化。而且从上式可以看出,如果从远处电源经输电线路向负荷提供无功功率,会使沿线路各点电压下降,甚至不能满足质量要求。1.1.2 无功功率在线路中的传输引起的损耗传输无功功率产生的功率损耗为=1, 可见经电抗传输无功时产生的无功功率损耗有两部分,一部分是因为沿电抗传输有功功率(0),这是不可避免的;另一部分是因为经联络阻抗传输
12、了无功功率()。可见减少线路无功功率的传输可以减少线路的无功功率损耗。从有功功率损耗公式可见,当有 功功率和无功功率通过网络电阻时,会造成有功功率损耗。当输送的有功功率一定时,总的有功网损主要取决于输送的无功功率的数值2。1.1.3 负荷无功功率对系统电压的影响在额定电压附近,负荷从系统吸收的无功功率随电压上升而增加,随电压下降而减小,当系统出现无功功率缺额,亦即无功电源不能提供足够的无功功率时,系统所接各负荷的电压将下降,减少其向系统吸收的无功功率;当系统无功过剩,无功吸收能力不足的情况下,系统电压将普遍升高,如果利用发电机进相吸收无功功率,当吸收无功超过其最大吸收能力时,可能会引起系统暂态
13、不稳定3。1.2 无功补偿原理配电网中负荷无论是工业负荷还是民用负荷 ,大部分是感性负荷。运行时需从电网吸收大量无功功率 , 致使电网功率因数、电能质量降低 , 电网 “ 技术损耗电能 ”增加。电网中安装并联电容器补偿装置后 , 可以减少电源向感性负荷经由输电线路输送的无功功率。由于减少了无功功率在电网中的流动 , 故可以降低输电线路和变压器因输送无功功率而造成的电能损耗 , 从而提高电网功率因数、减少线损、电能质量得到明显改善。电网中感性负荷等效电路可看作电阻 R和电感 L串联的电路 , 功率因数 cos =式中X=WL将 R、L串联电路与电容 C并联之后 , 电路见图 1 - a, 该电路
14、电流方程为:= +a) (补偿电路) b) 相量图(欠补偿)c) 相量图(过补偿)图 1-1 并联电容补偿无功功率的电路和向量图由图 1 - b的相量图可知 , 并联电容后 , 电压与 的相位差变小 , 即供电回路的功率因数提高了。此时供电电流的相位滞后电压 , 这种情况称欠补偿; 若电容 C的容量过大 , 使供电电流的相位超前于电压 , 这种情况称为过补偿 , 其向量图如 1 - c所示。这会引起变压器二次侧电压抬升; 电容器温升高 , 电容器本身的功率损耗增大 , 电容器使用寿命缩短; 容性无功在线路上传输也会增加电能损耗。故此种情况应避免。1.3无功补偿装置的发展现状1.3.1无功补偿装
15、置的发展传统的无功补偿设备有并联电容器、调相机和同步发电机等,图1-2所示为一种最简单的无功补偿。图1-2中,M代表需要滞后无功功率的用电设备, 和C是用于向M提供无功的无功补偿装置。当 闭合使M运行时,M从电网吸取有功功率和无功功率。为减少电网中的无功水平,我们将 闭合,用C中的超前电流补偿M中的滞后电流,完成无功补偿任务。由于C的补偿容量是固定的,它不能随着实际无功的变化而变化。因此,它适用于无功变化不大的场合。图1-2 最简单的无功补偿但在实际用电系统中,无功往往变化很大,图1-2所示的补偿装置显然无法满足要求。由于并联电容器阻抗固定,不能动态的跟踪负荷无功功率的变化:而调相机和同步发电
16、机等补偿设备又属于旋转设备,其损耗、噪声都很大,而且还不适用于太大或太小的无功补偿。所以这些设备已经越来越不适应电力系统发展的需要。20世纪70年代以来,随着研究的进一步加深出现了一种静止无功补偿技术(Static Var Compensation)。这种技术经过20多年的发展,经历了一个不断创新、发展完善的过程。所谓静止无功补偿是指用不同的静止开关电容器或电抗器,使其具有吸收和发出无功电流的能力,用于提高电力系统的功率因数,稳定系统电压,抑制系统振荡等功能4。图1-3 实用的无功补偿装置图1-3所示电路中,当无功变化时,控制器检测到该变化,就根据该变化控制补偿电容器组的投切,达到按实际需求的
17、无功量进行补偿的目的。无论是图 1-2电路还是图1-3电路,电容器组的投切都是靠开关 (i=1,2,3,n)来完成的,目前这种静止开关主要分为两种,即断路器或电力电子开关。断路器开关由于受器件固有特性的限制,在控制器检测到无功的变化需要投入或切除补偿电容器组时,开关速度较慢,约为10-30ms,不能快速跟踪负载无功功率的变化,而目前投切电容器时常会引起较为严重的冲击涌流和操作过电压,这样在需要频繁投切时,不但易造成接触点烧焊,而且使补偿电容部击穿,所受应力大,维修量大。因此,采用断路器作为开关的静止无功补偿装置也只适合于负荷变化不大,即相对稳定的情况。为了能快速跟踪补偿电网中的无功变化,在现代
18、电力电子器件和数字控制技术的支持下,具有瞬时投切能力的动态无功补偿装置应运而生5。1.3.2 当前无功补偿装置分类随着电力电子技术的发展与其在电力系统中的应用,交流无触点开关SCR 、GTR、GTO等的出现,将其作为投切开关速度可以提高500倍(约为10s),对任何系统参数,无功补偿都可以在一个周波完成,而且可以进行单向调节6。现今所指的无功补偿装置一般专指使用晶闸管的无功补偿设备,主要有以下三大类型:一类是具有饱和电抗器的无功补偿装置(SR:Saturated Reactor);第二类是晶闸管控制电抗器(TCR:Thyristor Control Reactor);第三类是晶闸管投切电容器(
19、TSC:Thyristor Switch Capacitor),后两类装置统称为SVC( Static Var Compensator)7。以下对此三类无功补偿技术逐一介绍。1.具有饱和电抗器的无功补偿装置(SR)饱和电抗器分为自饱和电抗器和可控饱和电抗器两种,相应的无功补偿装置也就分为两种。具有自饱和电抗器的无功补偿装置是依靠电抗器自身固有的能力来稳定电压,它利用铁心的饱和特性来控制发出或吸收无功功率的大小8。可控饱和电抗器通过改变控制绕组中的工作电流来控制铁心的饱和程度,从而改变工作绕组的感抗,进一步控制无功电流的大小。这类装置组成的无功补偿装置属于第一批补偿器9。但是由于这种装置中的饱和
20、电抗器造价高,约为一般电抗器的4倍,并且电抗器的硅钢片长期处于饱和状态,铁心损耗大,比并联电抗器大23倍,另外这种装置有振动和噪声,而且调整时间长,动态补偿速度慢,由于具有这些缺点,所有饱和电抗器的无功补偿器目前应用的比较少,一般只在超高压输电线路才有使用。2.晶闸管控制电抗器两个反并联的晶闸管与一个电抗器相串联,其单相原理图如图1-4所示。其三相多接成三角形,这样的电路并入到电网中相当于交流调压器电路接电感性负载,此电路的有效移相围为90180。当触发角= 90时,吸收的无功电流最大。根据触发角与补偿器等效导纳之间的关系式可知,增大触发角即可增大补偿器的等效导纳,这样就会减小补偿电流中的基波
21、分量,所以通过调整触发角的大小就可以改变补偿器所吸收的无功分量,达到调整无功功率的效果。图1-4 TCR型补偿器原理图 图1-5 TSC型补偿器原理图在工程实际中,可以将降压变压器设计成具有很大漏抗的电抗变压器,用可控硅控制电抗变压器,这样就不需要单独接入一个变压器,也可以不装设断路器。电抗变压器的一次绕组直接与高压线路连接,二次绕组经过较小的电抗器与可控硅阀连接。如果在电抗变压器的第三绕组选择适当的装置回路,例如加装滤波器,可以进一步降低无功补偿产生的谐波10。由于单独TCR只能吸收无功功率,而不能发出无功功率,为了解决此问题,可以将并联电容器与TCR配合使用构成无功补偿器。根据投切电容器的
22、元件不同,又可分为TCR与固定电容器配合使用的静止无功补偿器(TCR+FC)和TCR与断路器投切电容器配合使用的静止无功补偿器(TCR+MSC)。这种具有TCR型的补偿器反应速度快,灵活性大,目前在输电系统和工业企业中应用最为广泛11。由于固定电容器的TCR+FC型补偿装置在补偿围从感性围延伸到容性围是要求电抗器的容量大于电容器的容量,另外当补偿器工作在吸收较小的无功电流时,其电抗器和电容器都已吸收了很大的无功电流,只是相互抵消而已。TSC+MSC型补偿器通过采用分组投切电容器,在某种程度上克服了这种缺点。3.晶闸管投切电容器(TSC)为了解决电容器组频繁投切的问题,TSC装置应运而生。其单相
23、原理图如图1-5所示。两个反并联的晶闸管只是将电容器并入电网或从电网中断开,串联的小电抗器用于抑制电容器投入电网运行时可能产生的冲击电流。现在普遍把这种可以快速补偿电网无功功率的晶闸管投切电容器的无功补偿装置叫做动态无功补偿器。TSC用于三相电网中可以是三角形连接,也可以是星形连接。一般对称网络采用星形连接,负荷不对称网络采用三角形连接。不是希望电容器级数越多越好,但考虑到系统的复杂性与经济性,一般用K-1个电容值为C的电容和个电容值为C/2的电容组成2K级的电容组数12。TSC的关键技术问题是投切电容器时刻的选取。经过多年的分析与实验研究,其最佳投切时间是晶闸管两端的电压为零的时刻,即电容器
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动态 无功 补偿 控制器 研究 毕业论文
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内