基于单片机数字温度计设计毕业论文.doc
《基于单片机数字温度计设计毕业论文.doc》由会员分享,可在线阅读,更多相关《基于单片机数字温度计设计毕业论文.doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 基于单片机数字温度计设计毕业论文目 录第1章前言11.1 设计目标11.1.1 前景11.1.2 实现的可行性11.2 设计思路21.2.1 硬件设计思路21.2.2 软件设计思路2第2章方案论证42.1 方案一:使用热敏电阻42.2 方案二:采用数字温度芯片DS18B204第3章各电路设计与论证63.1 主控制器73.1.1 方案一:采用PC机实现73.1.2 方案二:使用单片机73.2 显示电路103.2.1 方案一:采用七段LED数码显示103.2.2 方案二:采用SMCI602A液晶显示模块芯片103.3 温度传感器的选择113.3.1 方案一:采用热敏电阻113.3.2 方案二:数
2、字温度传感器DS18B2011第4章软件设计184.1 软件总体设计流程184.2 模块设计184.2.1 读出温度流程184.2.2 温度处理流程194.2.3 LED 显示模块204.2.4 整体的温度处理与显示流程214.2 源程序214.3 软硬件系统的调试26结论31参考文献32致谢33附录3436 / 37第1章 前言随着科学技术日益迅速的发展,数字监控系统已经深入到生活的各个方面。数字温度计作为数字监控系统的重要组成部分发挥着极其重要的作用。它克服了接触式温度计对传感器的耐热性能要求比较苛刻的缺点,使温度计无论在使用围还是测量精度上都有了长足的进步。 本设计就是在这种广阔的应用背
3、景下应运而生的。下面就本设计的设计目标和思路进行简单介绍。 1.1 设计目标系统上电复位并初始化后,主控制器将发出略读电可擦除只读存储器与温度转换命令,然后执行读出温度和温度处理函数,最后用 4 位 LED 数码管显示温度值的百位、十位、个位与小数部分,以十进制方式显示。 1.1.1 前景温度是工业中非常关键的一项物理量,在农业,现代科学研究和各种高新技术的开发和研究中也是一个非常普遍和常用的测量参数。 温度测量的原理主要是:将随温度变化而变化的物理参数,如膨胀、电阻、电容、热电动势、磁性、频率、光学特性等通过温度传感器转变成电的或其他信号,传给处理电路。最后转换成温度数值显示出来。 传统的温
4、度测量方法基本上是接触式的,主要有:热膨胀式温度计,电阻式温度计,热电偶式温度计等。 这些接触式温度计的主要缺点是对传感器的耐热性能要求比较苛刻,所以对应的使用温度围比较有限。它们的精度也大大限制了他们的应用领域。 此外,由于这些测量方法大都是接触式的,会污染一些高纯度,高腐蚀性的测量对象。目前应用的比较广泛的非接触温度测量技术有红外非接触温度测量技术,单总线数字式温度测量技术等等。此外,激光测量温度技术,基于彩色三基色的温度测量技术也开始成为温度测量的手段。随着科学技术的进一步发展,相信更多更先进的温度测量手段会出现并影响我们的生产、生活和社会生活的方方面面。 1.1.2 实现的可行性在嵌入
5、式系统设计中,LED 显示器是常用的显示设备之一,它具有使用方便、价格便宜、电路接口简单等优点,因此,在嵌入式系统中被广泛使用。 为了实现 LED 显示器的数字显示,可以采用静态显示法和动态显示法。由于静态显示法需要数据锁存器等硬件,接口复杂一些,考虑到温度计显示只有 4 位,且系统没有其它复杂的处理任务,所以计划采用动态扫描法实现 LED 显示。主控制器计划采用飞思卡尔公司的 MC9S12DG128 单片机,这种单片机具有足够的空余硬件资源,以便可以实现其它的扩充功能。数字温度计要求用 4 位共阴极 LED 数码管显示温度值的百位、十位、个位与小数部分,以十进制方式显示。 1.2 设计思路主
6、控制器采用飞思卡尔公司的 MC9S12DG128 单片机,这种单片机具有足够的空余硬件资源,以便可以实现其它的扩充功能。利用温度传感器 DS18S20 来实现测温,它可以实现-55 至+125的显示,本设计使用 4 位共阴极 LED 显示,可满足该围温度的显示。 1.2.1 硬件设计思路硬件设计是整个系统的基础,要考虑的方方面面很多,除了实现此设计基本功能以外,主要还要考虑如下几个因素:系统稳定度;器件的通用性或易选购性; 软件编程的易实现性;系统其它功能与性能指标;因此硬件设计至关重要。 主要设计包括以下三部分: 单片机主控模块:采用 MC9S12DG128,单片机作为整个硬件系统的核心,它
7、既是协调整机工作的控制器,又是数据处理器。关于主控芯片的体系结构在第二章会有详细的介绍。 数字温度计模块:采用 DS18S20,DS18S20 是美国 DALLAS 公司推出的一种高性能、低功耗、实现单总线协议的温度传感器,它可以显示-55 至+125围的温度,采用单总线接口与 CPU 进行同步通信,在这个总线系统中,微处理器(主设备)识别并寻址在总线上的设备要使用每个设备的独一无二的 64 位码。DS18S20 能够不依靠额外的电能供应就能独立运行。它的主要特性在第三章有详细介绍。 LED 显示模块:在微控制器应用系统中,如果需要显示的容只有数码和某些字母,则使用 LED 数码管是一种较好的
8、选择。LED 数码管显示清晰,成本低廉,配置灵活,与微控制器的接口简单易行。LED 显示器有动态扫描和静态显示两种方式,动态扫描需要耗费大量的 MCU 时间,且亮度不够;而静态显示亮度高,MCU 负担小,但由于温度测量精度的要求较高,所以本设计采用 LED 动态扫描。 1.2.2 软件设计思路程序比较简单,初始化完成后,调用读出温度子程序,将温度寄存器中的温度读出,然后调用温度处理子程序,将温度数据转换成十进制值并送 LED 显示。主要模块有读出温度模块、温度处理模块和 LED 显示模块。 读出温度模块:首先复位后发送略读 ROM 命令,由于本设计总线上只有一个 DS18S20,因而总线控制器
9、不用提供 64 位 ROM 编码就使用存储器操作命令。其次发送读取超高速中间结果存储器命令,用于将超高速中间结果存储器中的容读出。读出后存放在一个 16位数组 temp_data中,其中将低 8 位放在 temp_data0中,高 8 位放在 temp_data1中。再次复位并再发略读 ROM 命令,以便读出下一个温度值。最后发送温度转换命令。 温度处理模块:首先判断读出的温度数据是正还是负,若为负则取补码;其次取出temp_data0中的bit0位并放入display0,该部分为温度值的小数部分; temp_data0中的剩余部分为温度值的整数部分,并分别取出百位、十位、个位数分别放在 di
10、splay3、display2和 display1中;最后对符号位是否显示做出处理。 LED 显示模块:由于 LED 数码管有共阳极和共阴极之分,而本设计采用的是共阴极数码管,因此需定义共阴极的十六进制数据到段码的转换表。本模块使用全局变量DispDigMsk 指向下一个要显示的数码;使用 DispSegTblDISP_N_DIG表示与每个要显示的数码相对应的段码;使用 DispSegTblIx 表示指向下一个要显示数码在段码表中的位置。具体处理步骤如下: 1、进行与显示驱动相关的 I/O 引脚初始化 2、中断显示处理: (1) 清模计数器中断标志 (2) 选择下一个要显示的数码 (3) 输出
11、该数码的段码 (4) 调整指针。如果在指向下一个段码时发现已经到了最后一个则返回第一个,否则指针后移并且 DispDigMsk 指向下一个要显示的数码。LED 的动态扫描功能通过以上步骤的循环实现。第2章 方案论证该系统主要由温度测量和数据采集两部分电路组成,实现的方法有很多种,下面将列出两种在日常生活中和工农业生产中经常用到的实现方案。2.1 方案一:使用热敏电阻由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路
12、比较麻烦。2.2 方案二:采用数字温度芯片DS18B20采用数字温度芯片DS18B20 测量温度,输出信号全数字化。便于单片机处理与控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。在0100 摄氏度时,最大线形偏差小于1 摄氏度。DS18B20 的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89S51构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用51 单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,
13、硬件实现简单,安装方便。控制工作,还可以与PC 机通信上传数据,另外AT89S51 在工业控制上也有着广泛的应用,编程技术与外围功能电路的配合使用都很成熟。该系统利用AT89S51芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。该系统扩展性非常强,它可以在设计中加入时钟芯片DS1302以获取时间数据,在数据处理同时显示时间,并可以利用AT24C16芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过MAX232芯片与计算机的RS232接口进行串口通信,方便的采集和整理时间温度
14、数据。系统框图如图1.1所示显示电路单片机驱动电路按键输入电路测温电路时钟电路复位电路扩展接口:对时间和温度信息定点存储,并与计算机进行数据交换报警电路图2.1 DS18B20温度测温系统框从以上两种方案,容易看出方案一的测温装置可测温度围宽、体积小,但是线性误差较大。方案二的测温装置电路简单、精确度较高、实现方便、软件设计也比较简单,故本次设计采用了方案二。第3章 各电路设计与论证温度计电路设计原理图如图3.1所示,控制器使用单片机AT89C2051,温度计传感器使用DS18B20,用数码管实现温度显示。本温度计大体分三个工作过程。首先,由DS18820温度传感器芯片测量当前的温度,并将结果
15、送入单片机。然后,通过89C205I单片机芯片对送来的测量温度读数进行计算和转换,井将此结果送入显示模块。由图2.1可看到,本电路主要由DSl8820温度传感器芯片、数码管显示模块和89C2051单片机芯片组成。其中,DSI8B20温度传感器芯片采用“一线制”与单片机相连,它独立地完成温度测量以与将温度测量结果送到单片机的工作。图3.1 温度计电路设计原理图3.1 主控制器3.1.1 方案一:采用PC机实现此方案采用PC机实现。它可在线编程,可在线仿真的功能,这让调试变得方便。且人机交互友好。但是PC机输出信号不能直接与DS18B20通信。需要通过RS232电平转换兼容,硬件的合成在线调试,较
16、为繁琐,很不简便。而且在一些环境比较恶劣的场合,PC机的体积大,携带安装不方便,性能不稳定,给工程带来很多麻烦!3.1.2 方案二:使用单片机使用单片机,对于单片机的选择,可以考虑使用8031与8051系列,由于8031没有部RAM,系统又需要大量存存储数据,因而不适用。AT89S51 是美国 ATMEL 公司生产的低功耗,高性能 CMOS8 位单片机,片含 4kbytes 的可编程的 Flash 只读程序存储器,兼容标准 8051 指令系统与引脚。它集 Flash 程序存储器既可在线编程(ISP),也可用传统方法进行编程,所以低价位 AT89S51单片机可为提供许多高性价比的应用场合,可灵活
17、应用于各种控制领域,对于简单的测温系统已经足够。单片机AT89S51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。主要特性如下与MCS-51 兼容4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年全静态工作:0Hz-24Hz三级程序存储器锁定128*8位部RAM32可编程I/O线两个16位定时器/计数器5个中断源可编程串行通道 低功耗的闲置和掉电模式片振荡器和时钟电路 89S51 引脚功能介绍图3.2 AT89S51单片机引脚图AT89S51单片机为40引脚双列直插式封装。 其引脚排列和逻辑
18、符号如图3.2所示: 各引脚功能简单介绍如下:VCC:供电电压GND:接地P0口:P0口为一个8位漏级开路双向I/O口,每个管脚可吸收8TTL门电流。当P1口的管脚写“1”时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FLASH编程时,P0口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部电位必须被拉高。P1口:P1口是一个部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入“1”后,电位被部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于部上拉的缘故。在FLASH编程和校验时
19、,P1口作为第八位地址接收。P2口:P2口为一个部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚电位被部上拉电阻拉高,且作为输入。作为输入时,P2口的管脚电位被外部拉低,将输出电流,这是由于部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用部上拉的优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3
20、口写入“1”后,它们被部上拉为高电平,并用作输入。作为输入时,由于外部下拉为低电平,P3口将输出电流(ILL),也是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口:P3.0 RXD(串行输入口)l P3.1 TXD(串行输出口)l P3.2 INT0(外部中断0)l P3.3 INT1(外部中断1)l P3.4 T0(记时器0外部输入)l P3.5 T1(记时器1外部输入)l P3.6 WR (外部数据存储器写选通)l P3.7 RD (外部数据存储器读选通)同时P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电
21、平时间。ALE / PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令时ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。PSEN:外部程序存储器的选通信号。在由外部程序存储器取址期间,每个机器周期PSEN两次有
22、效。但在访问外部数据存储器时,这两次有效的PSEN信号将不出现。EA/VPP:当EA保持低电平时,访问外部ROM;注意加密方式1时,EA将部锁定为RESET;当EA端保持高电平时,访问部ROM。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入与部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。单片机AT89C2051具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很适宜携手特式产品的使用。主机控制DS18B20完成温度转换必须经过三个步骤:初始化、ROM操作指令、存储器操作指令。必须先启动DS18B20开始转换,再读出温度
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 数字 温度计 设计 毕业论文
限制150内