3.2.1《圆的对称性》教案(北师大版九年级下) (4)doc--初中数学 .doc
《3.2.1《圆的对称性》教案(北师大版九年级下) (4)doc--初中数学 .doc》由会员分享,可在线阅读,更多相关《3.2.1《圆的对称性》教案(北师大版九年级下) (4)doc--初中数学 .doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费在线组卷 课件教案下载 无需注册和点数圆的对称性教学目标(一)教学知识点1圆的轴对称性2垂径定理及其逆定理3运用垂径定理及其逆定理进行有关的计算和证明(二)能力训练要求1经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法2培养学生独立探索、相互合作交流的精神(三)情感与价值观要求通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神垂径定理及其逆定理垂径定理及其逆定理的证明指导探索和自主探索相结合投影片两张:第一张:做一做(记作321A)第二张:想一想(记作321B)教学过程创设问题情境,引入新课师前
2、面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?生如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴师我们是用什么方法研究了轴对称图形?生折叠师今天我们继续用前面的方法来研究圆的对称性讲授新课师同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?生圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴师是吗?你是用什么方法解决上述问题的?大家互相讨论一下生我们可以利用折叠的方法,解决上述问题把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条
3、对称轴师很好教师板书:圆是轴对称图形,其对称轴是任意一条过圆心的直线下面我们来认识一下弧、弦、直径这些与圆有关的概念1圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc)2弦:连接圆上任意两点的线段叫做弦(chord)3直径:经过圆心的弦叫直径(diameter)如下图,以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”;线段AB是O的一条弦,弧CD是O的一条直径注意:1弧包括优弧(major arc)和劣弧(minor arc),大于半圆的弧称为优弧,小于半圆的弧称为劣弧如上图中,以A、D为端点的弧有两条:优弧ACD(记作),劣弧ABD(记作)半圆:圆的任意一条直径的两个端点分圆成两条弧,
4、每一条弧叫半圆弧,简称半圆半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧2直径是弦,但弦不一定是直径下面我们一起来做一做:(出示投影片321A)按下面的步骤做一做:1在一张纸上任意画一个O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合2得到一条折痕CD3在O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足4将纸打开,新的折痕与圆交于另一点B,如上图师老师和大家一起动手(教师叙述步骤,师生共同操作)师通过第一步,我们可以得到什么?生齐声可以知道:圆是轴对称图形,过圆心的直线是它的对称轴师很好在上述的操作过程中,你发现了哪些相等的线段和相等的弧?生
5、我发现了,AMBM,师为什么呢?生因为折痕AM与BM互相重合,A点与B点重合师还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?师生共析如下图示,连接OA、OB得到等腰OAB,即OAOB因CDAB,故OAM与OBM都是Rt,又OM为公共边,所以两个直角三角形全等,则AMBM又O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,与重合,与重合因此AMBM,=,=师在上述操作过程中,你会得出什么结论?生垂直于弦的直径平分这条弦,并且平分弦所对的弧师同学们总结得很好这就是利用圆的轴对称性得到的与圆相关的一个重要性质垂径定理在这里注意;条件中的“弦”可以是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆的对称性 3.2.1圆的对称性教案北师大版九年级下 4doc-初中数学 3.2 对称性 教案 北师大 九年级 doc 初中 数学
限制150内