实验一 (1)金属箔式应变片性能—单臂电桥.doc
《实验一 (1)金属箔式应变片性能—单臂电桥.doc》由会员分享,可在线阅读,更多相关《实验一 (1)金属箔式应变片性能—单臂电桥.doc(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、传感器技术及应用实验指导书目录CSY传感器实验仪简介1实验一 金属应变片传感器4实验二 电容式传感器、压电式传感器实验7实验三 热电偶、热电阻、PN温度传感器实验10实验四 电感式、磁电式传感器实验16实验五 光纤位移式传感器实验27实验六 气敏、湿敏传感器实验31CSY传感器实验仪简介实验仪主要由四部分组成:传感器安装台、显示与激励源、传感器符号及引线单元、处理电路单元。传感器安装台部分:装有双平行振动梁(应变片、热电偶、PN结、热敏电阻、加热器、压电传感器、梁自由端的磁钢)、激振线圈、双平行梁测微头、光纤传感器的光电变换座、光纤及探头小机电、电涡流传感器及支座、电涡流传感器引线3.5插孔、
2、霍尔传感器的二个半圆磁钢、振动平台(圆盘)测微头及支架、振动圆盘(圆盘磁钢、激振线圈、霍尔片、电涡流检测片、差动变压器的可动芯子、电容传感器的动片组、磁电传感器的可动芯子)、扩散硅压阻式传感器、气敏传感器及湿敏元件安装盒,显示及激励源部分:电机控制单元、主电源、直流稳压电源(2V10V档位调节)、FV数字显示表(可作为电压表和频率表)、动圈毫伏表(5mV-500mV)及调零、音频振荡器、低频振荡器、15V不可调稳压电源。实验主面板上传感器符号单元:所有传感器(包括激振线圈)的引线都从内部引到这个单元上的相应符号中,实验时传感器的输出信号(包括激励线圈引入低频激振器信号)按符号从这个单元插孔引线
3、。处理电路单元:电桥单元、差动放大器、电容放大器、电压放大器、移相器、相敏检波器、电荷放大器、低通滤波器、涡流变换器等单元组成。主要技术参数、性能及说明传感器安装台部分: 双平行振动梁的自由端及振动圆盘下面各装有磁钢,通过各自测微头或激振线圈接入低频激振器VO可做静态或动态测量。应变梁:应变梁采用不锈钢片,双梁结构端部有较好的线性位移。传感器:1、差动变压器量程:5mm 直流电阻:510由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体. 2、电涡流位移传感器量程:1mm直流电阻:12 多股漆包线绕制的扁平线圈与金属涡流片组成。 3、霍尔式传感器量程: 2mm直流电阻:激励源端口
4、:8001.5K 输出端口:300500 日本JVC公司生产的线性半导体霍尔片,它置于环形磁钢构成的梯度磁场中。 4、热电偶直流电阻:10左右由两个铜一康铜热电偶串接而成,分度号为T冷端温度为环境温度。5、电容式传感器量程:2mm由两组定片和一组动片组成的差动变面积式电容。6、热敏电阻由半导体热敏电阻NTC:温度系数为负,25时为10K。7、光纤传感器由多模光纤、发射、接收电路组成的导光型传感器,线性范围2mm。红外线发射、接收、直流电阻:5001.5k260股丫形、半圆分布。8、压阻式压力传感器量程:10Kpa(差压) 供电:6V 直流电阻:Vs+-Vs- :350450 Vo+-Vo- :
5、3K3.5K美国摩托罗拉公司生产的MPX型压阻式差压传感器,具有温度自补偿功能,先进的X型工作片(带温补)。9、压电加速度计PZT-5双压电晶片和铜质量块构成。谐振频率:10KHZ,电荷灵敏度:q20pc/g。10、应变式传感器箔式应变片阻值:350、应变系数:211、PN结温度传感器:利用半导体P-N结良好的线性温度电压特性制成的测温传感器,能直接显示被测温度。灵敏度:-2.1mV/。12、磁电式传感器0 .211000直流电阻:3040 由线圈和动铁(永久磁钢)组成,灵敏度:0.5v/m/s13、气敏传感器MQ3:酒精:测量范围:502000ppm。14、湿敏电阻高分子薄膜电阻型:RH:几
6、兆几K 响应时间:吸湿、脱湿小于10秒。湿度系数:0.5RH%/ 测量范围:1095 工作温度:050二、信号及变换:1、电桥: 用于组成应变电桥,提供组桥插座,标准电阻和交、直流调平衡网络。2、差动放大器 通频带010kHz可接成同相、反相,差动结构,增益为1-100倍的直流放大器。3、电容变换器 由高频振荡,放大和双T电桥组成的处理电路。4、电压放大器增益约为5倍 同相输入 通频带010KHz5、移相器 允许最大输入电压10Vp-p移相范围20(5kHz时)6、相敏检波器 可检波电压频率010kHz允许最大输入电压10Vp-p 极性反转整形电路与电子开关构成的检波电路7、电荷放大器 电容反
7、馈型放大器,用于放大压电传感器的输出信号。8、低通滤波器 由50Hz陷波器和RC滤波器组成,转折频率35Hz左右9、涡流变换器 输出电压|8|V(探头离开被测物变频式调幅变换电路,传感器线圈是振荡电路中的电感元件10、光电变换座 由红外发射、接收组成。三、二套显示仪表数字式电压/频率表:3位半显示,电压范围02V、020V,频率范围3Hz2KHz、10Hz20KHz,灵敏度50mV。指针式毫伏表:85c1表,分500mV、50mV、5mV三档,精度2.5%。四、二种振荡器音频振荡器:0.4KHz10KHz输出连续可调,V-p-p值20V,180、0反相输出,Lv端最大功率输出电流0.5A。低频
8、振荡器:130Hz输出连续可调,Vp-p值20V,最大输出电流0.5A,Vi端可提供用做电流放大器。五、二套悬臂梁、测微头双平行式悬臂梁二副(其中一副为应变梁,另一副装在内部与振动圆盘相连),梁端装有永久磁钢、激振线圈和可拆卸式螺旋测微头,可进行压力位移与振动实验。电加热器二组电热丝组成,加热时可获得高于环境温度30左右的升温。测速电机一组由可调的低噪声高速轴流风扇组成,与光电、光纤、涡流传感器配合进行测速实验。八二组稳压电稳直流15V,主要提供温度实验时的加热电源,最大激励1.5A。2V10V分五档输出,最大输出电流1.5A。提供直流激励源。实验一 金属应变片传感器(1)金属箔式应变片性能单
9、臂电桥实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。所需单元及部件:直流稳压电源、电桥、差动放大器、双平行梁测微头、一片应变片、F/V表、主、副电源。实验步骤:(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。(2)将差动放大器调零.(3)根据图1接线R1、R2、R3为电桥单元的固定电阻,R4为应变片。调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1使电桥平衡。 图(4)旋转测微头使得双平等梁的自由端与
10、磁钢吸合,调节测微头支柱的高度(梁的自由端跟随变化)使FV表显示最小,再旋动测微头,使FV表显示为零(细调零),这时的测微头刻度为零位的相应刻度。(5)往下或往上旋动测微头,使梁的自由端产生位移记下FV表显示的值。建议每旋动测微头一周即X0.5mm记一个数值填入表格1中:表格1位移(mm) 0 0.5mm1.0mm1.5mm电压(mv)(6)据所得结果计算灵敏度SVX(式中X为梁的自由端位移变化,V为相应FV表显示的电压相应变化)。注意事项:做此实验时应将低频振荡器的幅度关至最小,以减小其对直流电桥的影响。问题:本实验电路对直流稳压电源和对放大器有何要求? (2) 金属箔式应变片:单臂、半桥、
11、全桥比较实验目的:验证单臂、半桥、全桥的性能及相互之间关系。所需单元和部件:直流稳压电源、差动放大器、电桥、FV表、测微头、双平行梁、应变片、主、副电源。实验步骤:单臂电桥性能测试如实验一(1)所示。半桥测量电路中,将图1电路中R3固定电阻换为与R4应变片状态相反的另一应变片,即取两片受力方向不同应变片,形成半桥。保持差动放大器增益不变,调零。调节测微头脱离双平衡梁,调节W1使电桥平衡重复实验一(1)中(4)-(5)步骤,数据记录在表格2中,根据测量结果计算半桥测量电路灵敏度SVX。 表格2位移(mm)00.5mm1.0mm1.5mm电压(mv)(6) 全桥测量电路中,将图1电路中R1,R2两
12、个固定电阻换成另两片受力应变片(即R1换成 ,R2换成 ,)组桥时只要掌握对臂应变片的受力方向相同,邻臂应变片的受力方向相反即可,否则相互抵消没有输出,这样接成一个直流全桥测量电路,(7) 重复实验一(1)中(4)-(5)步骤,数据记录在表格3中,根据测量结果计算全桥测量电路灵敏度SVX。表格3位移(mm)00.5mm1.0mm1.5mm电压(mv) (8) 在同一坐标纸上描出X-V曲线,比较三种测量电路的灵敏度。注意事项:(1) 在更换应变片时应将电源关闭。(2) 在实验过程中如有发现电压表发生过载,应将电压量程扩大。(3) 在本实验中只能将放大器接成差动形式,否则系统不能正常工作。(4)
13、直流稳压电源4V不能打的过大,以免损坏应变片或造成严重自热效应。(5) 接全桥时请注意区别各片子的工作状态方向。实验二 电容式传感器、压电式传感器实验(1)差动变面积式电容传感的静态及动态特性实验目的:了解差动变面积式电容传感器的原理及其特性。所需单元及部件:电容传感器、差动放大器、低通滤波器、V表、低频振荡器、示波器实验原理:电容式传感器有多种形式,本仪器是差动平行变面积式。传感器由两片定片和一组动片组成。当安装于振动台上的动片上,下改变位置,与两组静片之间的重叠面积发生变化,极间电容也发生相应变化,成为差动电容。如将上层定片与动片形成的电容定为CX1 ,下层定片与动片形成的电容定为CX2
14、,当将CX1 ,和CX2 接入双T型桥路作为相邻两臂时,桥路的输出电压量与电容量的变化有关,即于振动台的位移有关。实验内容:(1)静态特性测量电路如图1所示: 图1(2)差动放大器增益旋钮首先置于最大,调零后旋钮再置于中间。(3)FV表打到合适档位,磁棒吸合平台2,调节测微头,使FV表输出为零。此刻的测微头刻度为零位的相应刻度。(4)转动测微头,每次0.1mm,记下此时测微头的读数及电压表的读数,直至电容动片与上(或下)静片复盖面积最大为止。X(mm)00.1mm0.2mmV(mv)退回测微头至初始位置。并开始以相反方向旋动。同上法,记下X(mm)及 V(mv)值。X(mm)0-0.1mm-0
15、.2mmV(mv)(5)计算系统灵敏度。(式中为电压变化,为相应的梁端位移变化),并作出关系曲线。(6)动态特性测量电路如图2,卸下测微头,磁棒不吸合震动台2,断开电压表,接通激振器线圈1,使平台产生震动,用示波器观察输出波形。(7)固定低频振荡器的幅度旋钮至某一位置,调节频率,调节时用频率表监测频率,也可用示波器读出频率,用示波器读出峰峰值填入下表 F ( Hz ) 5 6 7 8 9 10 11 12 13 14 15 V ( P-P ) 注意事项:(1)注意差动电容器上下两个静片之间绝缘;两个静片与动片之间绝缘。 (2)理想情况下,差动变容器动态特性测量示波器输出正弦波。测量中注意去除环
16、境周围对振动平台2的影响。(3)如果差动放大器输出端用示波器观察到波形中有杂波,请将电容变换器增益进一步减小。(2)压电式传感器的动态响应测试实验目的:了解压电式传感器的原理、结构及应用。所需单元及设备:低频振荡器、电荷放大器、低通滤波器、压电传感器、双踪示波器、激振线圈、表、主、副电源、振动平台。实验步骤:(1)观察压电式传感器的结构,传感器由PZT-5锆钛酸铅压电晶片和铜质量块构成。根据图1的电路结构,将压电式传感器,电荷放大器,低通滤波器,双线示波器连接起来,组成一个测量线路。并将低频振荡器的输出端与频率表的输入端相连。图1(2)将低频振荡信号接入振动台的激振线圈2。(3)调整好示波器,
17、低频振荡器的幅度旋钮固定至最大,调节频率,调节时用频率表监测频率,也可用示波器读出频率,用示波器读出峰峰值填入下表:F(HZ)571215172025V(p-p)思考:根据实验结果,可以知道振动台的自振频率大致多少?试回答压电式传感器的特点。注意:由于双平衡梁结构,压电加速度传感器动态响应测试中,示波器输出正弦波中波峰和波谷均发生内凹现象。实验三 热电偶、热电阻、PN温度传感器实验(1)热电偶原理及现象 实验目的:了解热电偶的原理及现象所需单元及附件:15V不可调直流稳压电源、差动放大器、FV表、加热器、热电偶、水银温度计(自备)、主副电源旋钮初始位置:FV表切换开关置2V档,差动放大器增益最
18、大。热电偶工作原理:二种不同的金属导体互相焊接成闭合回路时,当两个接点温度不同时回路中就会产生电流,这一现象称为热电效应,产生电流的电动势叫做热电势。通常把两种不同金属的这种组合称为热电偶。热电偶的两种不同金属线焊接在一起后形成两个结点,如图(a)所示,环路电压VOUT为热结点结电压与冷结点(参考结点)结电压之差。因为VH和VC是由两个结的温度差产生的,也就是说VOUT是温差的函数。比例因数对应于电压差与温差之比,称为Seebeck系数。热电偶测温原理图(b)所示是一种最常见的热电偶应用。该配置中引入了第三种金属(中间金属)和两个额外的结点。本例中,每个开路结点与铜线电气连接,这些连线为系统增
19、加了两个额外结点,只要这两个结点温度相同,中间金属(铜)不会影响输出电压。这种配置允许热电偶在没有独立参考结点的条件下使用。VOUT仍然是热结点与冷结点温差的函数,与Seebeck系数有关。然而,由于热电偶测量的是温度差,为了确定热结点的实际温度,冷结点温度必须是已知的。冷结点温度为0(冰点)时是一种最简单的情况,如果TC=0,则VOUT=VH。这种情况下,热结点测量电压是结点温度的直接转换值。不过,在实际应用中这是难以实现的。为此,美国国家标准局(NBS)提供了各种类型热电偶的电压特征数据与温度对应关系的查找表,所有数据均基于0冷结点温度。利用冰点作为参考点,通过查找适当表格中的VH可以确定
20、热结点温度。实验步骤:(1)解热电偶在实验仪上的位置及符号,(参见附录)实验仪所配的热电偶是由铜康铜组成的简易热电偶,分度号为T。实验仪有二个热电偶,它封装在双平行梁的上片梁的上表面(在梁表面中间二根细金属丝焊成的一点,就是热电偶)和下片梁的下表面,二个热电偶串联在一起产生热电势为二者的总和。(2)按图1接线、开启主、副电源,调节差动放大器调零旋钮,使FV表显示零,记录下自备温度计的室温。图1(3)将15V直流电源接入加热器的一端,加热器的另一端接地,观察FV表显示值的变化,待显示值稳定不变时记录下FV表显示的读数E。(4)用自备的温度计测出上梁表面热电偶处的温度t并记录下来。(注意:温度计的
21、测温探头不要触到应变片,只要触及热电偶处附近的梁体即可)。(5)根据热电偶的热电势与温度之间的关系式:Eab(t,to)=Eab(t,tn)+Eab(tn,to)其中:t -热电偶的热端(工作端或称测温端)温度。 tn-热电偶的冷端(自由端即热电势输出端)温度也就是室温。 to-01.热端温度为t,冷端温度为室温时热电势。Eab(t,tn)=(f/v显示表E)/100*2(100为差动放大器的放大倍数,2为二个热电偶串联)。2.热端温度为室温,冷端温度为0,铜康铜的热电势:Eab(tn,to):查以下所附的热电偶自由端为0时的热电势和温度的关系即铜康铜热电偶分度表,得到室温(温度计测得)时热电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实验一 1金属箔式应变片性能单臂电桥 实验 金属 应变 性能 电桥
限制150内