大学物理课件:第十章.doc
《大学物理课件:第十章.doc》由会员分享,可在线阅读,更多相关《大学物理课件:第十章.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十章 变化电磁场的基本规律一、基本要求1掌握法拉第电磁感应定律。2理解动生电动势及感生电动势的概念,本质及计算方法。3理解自感系数,互感系数的定义和物理意义,并能计算一些简单问题。4了解磁能密度的概念5了解涡旋电场、位移电流的概念,以及麦克斯韦方程组(积分形式)的物理意义,了解电磁场的物质性。二、基本内容1. 电源的电动势在电源内部,把单位正电荷由负极移到正极时,非静电力所做的功为作用于单位正电荷上的非静电力,电动势方向为电源内部电势升高的方向。2法拉第电磁感应定律 当闭合回路面积中的磁通量随时间变化时,回路中即产生感应电动势: i方向由式中负号或楞次定律确定。该定律是电磁感应的基本规律,无
2、论是闭合回路还是通过作辅助线形成闭合回路,只要能够求出该回路所围面积的磁通量,就可以应用定律得到该回路中的感应电动势。自感、互感电动势也是该定律的直接结果。3.动生电动势 动生电动势是导体在稳恒磁场中运动而产生的感应电动势,它的起源是非静电场力洛伦兹力,其数学表达式为 i或 ab式中,动生电动势方向沿()方向。如ab0,则VaVb (b点点势高);如abVb (a点势高);4 感生电动势和涡旋电场 感生电动势是由变化的磁场而产生的感应电动势,它的起源是涡旋电场,其数学表达式为 涡旋电场:变化的磁场在其周围产生的电场,其电场线是闭合的,因而叫涡旋电场。是麦克斯韦的第一条假设。注意涡旋电场与静电场
3、的起源机制和性质二者的区别。如果已知涡旋电场分布,可以通过积分求出一段导线两端的感应电动势,对于特殊的涡旋电场分布,可以通过作辅助线的方法,利用法拉第电磁感应定律求出一段导线两端的感应电动势。5. 自感系数和自感电动势 式中比例系数为回路的自感系数,简称自感。如果回路周围不存在铁磁质,自感系数仅取决于线圈自身的大小、几何形状、匝数以及线圈内磁介质的磁导率,与回路电流无关。由于线圈自身电流的变化,而在线圈中产生的感生电动势叫做自感电动势。根据法拉第电磁感应定律,自感电动势为L若回路的自感不随时间变化,则 L6. 互感系数和互感电动势互感系数满足的规律是 称为线圈对线圈的互感系数,简称互感。同理线
4、圈的电流强度的磁场,穿过线圈的磁通链与成正比,即 则称为线圈对线圈的互感系数,也称为互感。理论和实验均可证明 =称为互感系数,由两个线圈自身的几何结构、形状、大小,相对位置以及周围磁介质决定,对于非铁磁质,互感系数为常量,与两线圈中的电流无关。当一线圈中的电流发生变化时,在邻近的另一线圈中产生的感生电动势叫做互感电动势。根据法拉第电磁感应定律,互感电动势为21若不随时间变化,则 21同理 127. 磁场能量磁场的能量密度 wm=总磁场能量 自感磁能: 8. 位移电流 位移电流 位移电流密度 位移电流的概念是在将稳恒电流情况下所满足的安培环路定律应用于非稳恒电路时出现矛盾而因入的,由于传导电流在
5、电容器的两极板间中断,为了使安培环路定律具有更普遍意义,麦克斯韦提出,如果把变化电场看作一种等效电流,则整个回路的电流就连续了,所以位移电流的大小,在数值上等于极板间电位移通量的时间变化率。变化的电场产生磁场是麦克斯韦的第二条假设,位移电流不产生焦耳热,尽管位移电流与传导电流产生的机理不同,但它们都产生磁场,而且产生磁场的规律是相同的。9. 麦克斯韦方程组麦克斯韦方程组是电磁场理论的高度概况,用它可以预言电磁波。10. 电磁场的物质性近代物理表明,电磁场具有能量、动量和质量,它具有波粒二象性。三、习题选解10-1如图所示,在通以电流的长直导线近旁有一导线段,长,离长直导线距离。当它沿平行于长直
6、导线的方向以速度平移时,导线段中的感应电动势有多大? 哪端的电势高?解:在线段上任取一线元,如图,其与垂直且与反向,故i 所端电势高。 题10-1图10-2 如图所示,长直导线中通有5A的电流,共面矩形线圈共1103匝,以的速度向右平移,求:当时线圈中的感应电动势。解:取顺时针方向为回路绕行正方向,则在回路所围平面中平面法线方向与平面中磁感应强度方向相同,均为垂直至面向内,无限长直导线在空间产生的磁感应强度的大小为B=设在某一时刻t,回路左边竖框距导线为x, 题10-2图 取任一小面元,则通过此小面元的元磁通为通过整个回路的磁通量为当回路运动时,回路中的感应电动势i 当运动至处时i i,说明回
7、路中感应电动势方向与选定的绕行回路方向相同,为顺时针方向。此题中要注意,以匀速运动的线圈中感应电动势并非常量,而是线圈与导线间距离的函数。题10-3图10-3 如图所示,法拉第圆盘发电机 是一个在磁场中转动的导体圆盘,若圆盘 半径为,它的转轴与均匀外磁场的磁感应强度平行,圆盘的转动角速度为。求:(1)盘的边与盘心之间的电势差(2)当,转速为,(3)盘边与盘心哪处电势高?若将盘反转,电势高低可否反过来?解:(1)在连接盘心与盘边的任一半径上取一线元与圆心距离为,该线元切割磁力线所产生的动生电动势大小为 则盘心与盘边之间的电势差 i =(2)若 (3)根据右手定则,动生电动势的方向指向盘边,盘边电
8、势高,若将盘反转,则盘心电势高。10-4 如图所示,两个同轴的圆周导线,两导线平面间相距为,并知,当圆周导线内有恒定电流流动时,圆周导线因较小,在内磁感29应强度可以认为是均匀的。若以变化。(1)求:穿过小圆周线的磁通量与的关系?(2)当时刻(为正数回路产生感应电动势的大小?(3)若0,确定回路感应电流的方向?题10-4图解:(1) 圆周导线在通有电流时,小圆周导线所在处的磁感应强度 穿过小圆周回路的磁通量 (2)小圆周回路的感应电动势i 把,代入 i (3)若0,由楞次定律i0,回路感应电流的方向为顺时针方向(俯视)。10-5 如图所示,一个半径为,电阻为的刚性线圈在匀强磁场中绕轴以转动,若
9、忽略自感,当线圈平题10-5图面转至与平行时,求:(1)AB、AC各等于多少?(注意)(2)确定两点哪点电势高?两点哪点电势高?解:(1)在圆弧CA某点上取一线元,方向如图,与的夹角为,线元因切割磁力线而产生的动生电动势i又 所以 I-间任一段由的圆弧的动生电动势题10-5图 i 故 BACA(2) 由(1)知CA0、BA 0,则i方向为ADCBA顺时针绕向。(2)回路沿轴正向运动,时,时,矩形回路在时刻的磁通量 = =ii方向为ADCBA(3)回路绕轴以匀速转动。设回路平面与轴夹角为, 在回路中取面积元,与轴相距为,通过面积元的磁通量 题10-6(b)图矩形回路的磁通量感应电动势 i=方向为
10、ABCDA10-7 如图所示,一长直导线通有电流,其附近有正方形线圈,线圈绕轴以匀角速旋转,转轴与导线平行,二者题10-7图相距为,且在线圈平面内与其一边平行并过中心,求任意时刻线圈中的感应电动势。解:设时,线圈与直导线在同一平面。时,线圈转过角度(如图)此时通过线圈的磁通量等于通过宽为高为与直导线共面的线圈的磁通量,设点点到直导线距离分别为 =i = 题10-7(a)图 题10-7(b)图10-8 如图所示,质量为、长度约为的金属棒由静止开始沿倾斜的绝缘框架下滑,设磁场竖直向上,求棒内的动生电动势与时间的函数关系,不计棒与 题10-8图框架的摩擦。如果棒(金属)是沿光滑的 金属斜框架下滑,结
11、果有何不同?提示: (回路中将产生感应电流,并设回路电阻为常量考虑)。解:(1)金属棒所受重力加速度沿斜面方向的分量为 棒的速度 磁场沿垂直于棒运动方向(垂直于斜面)的分量为 故棒的动生电动势 i=(2)若框架为光滑金属,电阻恒为,当棒以速度沿斜面下滑时,回路感生电动势i感生电流 I=i /R 题10-8图金属棒受安培力沿斜面的分量 由牛顿定律 即 分离变量 由初始条件。两边积分 题10-9图10-9 如图所示,在长直导线中通以交变电流,其中为瞬时电流, 为其最大值。在与此导线相距为远处 有一边长为和的矩形线圈。求:(1)在任意时刻穿过线圈的磁通量;(2)在任意时刻线圈中的感应电动势。(线圈平
12、面直导线共面。解:(1)导线通有交变电流,在周围空间产生交变磁场,在距导线为处磁感应强度为 取顺时针方向为回路绕向,在距导线为处题10-9图的矩形线圈内取面积元,通过该面积元的磁通量为 在时刻通过线圈的磁通量为 (2)由i 得,线圈中的感应电动势i 10-10 如图所示,边长为的正方形导体回路,置于虚线内的均匀磁场中为,且以的变化率减小,图中点为圆心,沿直径,求:(1)各点感应电场的方向;(2)和的电动势;题10-10图题10-10图解:(1)参考P335例10-5知: 点的感应电场的方向都垂直于该点半径,沿顺时针方向。(2)在段取线元与圆心距离为,管内磁场均匀分布,由于边界为圆,分布具有轴对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 课件 第十
限制150内