基于51单单片机的自动循迹小车毕业论文.doc





《基于51单单片机的自动循迹小车毕业论文.doc》由会员分享,可在线阅读,更多相关《基于51单单片机的自动循迹小车毕业论文.doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. . .基于51单单片机的自动循迹小车毕业论文目 录摘 要1ABSTRACT21 绪论31.1 研究背景31.2 自动循迹小车的国外研究现状31.3 本课题设计的主要工作与结构安排42 自动循迹小车系统方案设计52.1 自动循迹小车基本原理52.2 总体方案设计52.2.1 系统总体方案的设计52.2.2 方案选择与论证53 系统硬件设计83.1 自动循迹小车硬件设计83.2 单片机控制器模块设计83.3 稳压电路模块103.4 电动机驱动模块123.5 循迹电路设计134 系统软件设计154.1 系统软件流程图154.2 程序设计164.2.1 计时程序设计164.2.2 主程序设计165
2、 系统扩展185.1 避障功能扩展185.2 遥控功能扩展196 系统调试21结 束 语23参 考 文 献24附录A 总电路图25附录B 仿真电路图26附录C 小车实物图27附录D 循迹避障遥控源程序281 绪论1.1 研究背景目前,智能车辆以与在智能车辆基础上开发出来的产品已成为自动化物流运输、柔性生产组织等系统的关键设备,当生产现场环境恶劣时,人工不能完成的任务如物料运输和装卸等,可采用智能循迹小车完成相应的任务。世界上许多国家都在积极进行智能车辆的研究和开发设计。移动机器人是机器人学中的一个重要分支,出现于20世纪06年代。当时斯坦福研究院(SRI)的NilsNilssen和charle
3、sRosen等人,在1966年至1972年中研制出了取名shakey的自主式移动机器人,目的是将人工智能技术应用在复杂环境下,完成机器人系统的自主推理、规划和控制。从此,移动机器人从无到有,数量不断增多,智能车辆作为移动机器人的一个重要分支也得到越来越多的关注。智能小车,以轮子作为移动机构、能够实现自主行驶的机器人,我们称之为智能小车,又称轮式机器人,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航与白动控制等技术,是典型的高新技术综合体。在工业生产中,可以代替人类完成恶劣环境下的货物搬运、设备检测等任务;在军事上,可以在危险地带代替人类
4、完成侦查、排雷等任务;在民用上,可以作为导盲车为盲人提供帮助;在科学研究方面,可以代替人类完成外星球勘探或者矿藏勘探等。因此对智能小车的研究具有非常大的意义。1.2 自动循迹小车的国外研究现状 国外智能小车始于上世纪50年代,它的发展历程大致可以分为以下三个阶段:第一阶段:1954年美国Barrett Electronic公司研究开发出了世界上第一台自主引导车系统,该系统只是一个运行在固定路线上的拖车式运货平台,但它却具有了智能车辆最基本的特征无人驾驶。第二阶段:从80年代中后期,在欧洲,普罗米修斯项目于1986年开始了在这个领域的探索,在美洲,美国于1995年成立了国家自动高速公路系统联盟,
5、其目标之一就是研究发展智能车辆的可行性,并促进智能车辆技术进入实用化,在亚洲,日本于1996年成立了高速公路先进巡航/辅助驾驶演剧协会,主要目的是研制自动车辆导航的方法,促进日本智能车辆的整体进步。进入80年代中期,设计和制造智能车辆的浪潮席卷了全世界,一大批世界著名的公司开始研制智能车辆平台。第三阶段:从90年代开始,智能车辆进入了深入、系统、大规模的研究阶段。最为突出的是,美国卡基-梅陇大学机器人研究所完成了Navlab系列的自主车的研究,取得了显著的成就。相比于国外,我国开展智能车辆技术方面的研究开始于20世纪80年代,而且大多数研究尚处于针对某个单项技术研究的阶段。虽然我国在智能车辆技
6、术方面的研究总体上落后于发达国家,但是我国也取得了一系列的成果,主要有:中国第一汽车集团公司和国防科技大学于2003年研制成功了我国第一辆自主驾驶轿车;交通大学应用现代控制理论设计出了一种自动驾驶汽车模型,该模型在汽车系统的动力学建模的基础之上,设计了自动驾驶的专项系统,它能根据弯道的弯曲变化程度实时的计算出车辆的转向盘角度,控制车辆按照预设道路行驶;清华大学计算机系智能技术与系统国家重点实验室自1988年开始研制的THMR系列移动机器人取得了很大的成功。它兼有面向高速公路和一般道路的功能,目前已经能够在校园的非结构化道路环境下,进行道路跟踪和避障自主行驶;工业大学于1996年研制成功的导游机
7、器人等。1.3 本课题设计的主要工作与结构安排本设计的循迹小车具有自动循迹功能,另外扩展了避障和遥控功能,整体设计可以分为如下几个模块,控制核心采用STC89C52单片机,循迹避障是通过传感器实现的,利用RPR220型光电对管对轨迹信息进行检测,利用红外避障传感器检测道路上的障碍,用PT2272 、PT2262组成无线遥控模块。整个系统具有自动循迹避障和遥控避障等功能。整个系统的电路结构较简单,可靠性能高,实验测试结果满足要求。本论文分为以下几个方面进行阐述所设计的自动循迹小车系统: 第1章 绪论。主要概述自动循迹小车的研究背景和意义; 第2章 系统总体方案设计。主要表达了自动循迹小车的基本原
8、理和总体设计方案; 第3章 系统硬件设计。对系统的硬件电路进行分块设计; 第4章 系统软件设计。对系统的软件进行了设计与分析; 第5章 系统扩展。对系统的扩展电路进行了软硬件设计分析; 第6章 系统调试。主要概述了系统部分模块的调试方法。2 自动循迹小车系统方案设计2.1 自动循迹小车基本原理 循迹就是能够沿着给定的轨迹运行,一般给定的轨迹为在白色地面上黑色轨迹。为了实现这一目的,就需要轨迹检测模块,这相当于小车的眼睛,需要将路面信息返回到大脑中,这大脑就需要有信息处理功能的微处理器来构成,处理的信息需要执行机构来执行,这就需要电机驱动模块,来实现小车的行走功能,而一个完整的系统,还需要有电源
9、模块来提供能量。 简言之,系统的基本原理就是:循迹模块将检测到的路面信息传送给微处理器来处理,然后将处理结果送到电机驱动模块执行,达到循迹的目的。2.2 总体方案设计2.2.1 系统总体方案的设计根据论文的要求,系统设计方案如下:本自动循迹小车以STC89C52单片机作为微控制器,采用RPR220型红外对管组成循迹模块,采用L298电机驱动芯片和两个直流减速电机构成电机驱动模块,以7805稳压管构成电源电路。自动循迹小车系统结构框图如图2.1所示。STC89C52单片机2个电动机电机驱动模块L2987805稳压电源模块轨迹探测模块 图2.1 自动循迹小车系统结构框图2.2.2 方案选择与论证(
10、1)控制器的选择 方案一:STC89C52单片机作为系统的控制器。STC89C52是一种低功耗、高性能CMOS8位微控制器,具有8K系统可编程Flash存储器。在单芯片上,拥有灵巧的8位CPU和系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案,stc系列的单片机可以在线编程、调试,方便地实现程序的下载与整机的调试,并且价格便宜。方案二:采用FPGA作为系统的主控制器。FPGA可以实现各种复杂的逻辑功能,规模大,集成度高,体积小,稳定性好,IO口资源丰富,易于进行功能扩展,处理速度快,常用于大规模实时性要求较高的系统,但价格高,编程实现难度大。本系统
11、逻辑功能简单,仅仅需要接收传感器的信号和控制电机,对控制器的数据处理能力要求不高,从性价比方面考虑选择方案一。(2)电源模块方案一:电脑USB串口供电。能直接为单片机提供稳定的+5V直流电压。USB串口线又容易得到。但需要很长的线,这样导致无法在室外工作。方案二:用7.2V充电电池组作为小车供电电源。经7805稳压后给单片机供电,而7.2V电压可直接接在L298驱动芯片上作为两个直流电机的驱动电压。在不超过单片机工作电压围的情况下,又能驱动直流电机。这个电源结构简单,价格便宜,容易得到,而且能够重复使用。方案三:采用4节普通5号电池作为小车的供电电源。刚买的5号电池测得电压为1.7V,4节就是
12、6.8V,单片机需要5V电源,因此用7805稳压到5V后供电,但是其放电电流不大,导致电动机转速很慢,而且在使用过程中,其电压会明显降低,普通5号电池会降到1.4V以下,这样导致经过7805稳压后电压小于5V,完全无法带动整个系统正常工作,因此放弃该方案。综上所述,选择方案二作为小车电源模块,经济实惠。(3)电动机的选择方案一:采用直流电机。直流电机转动力矩大,响应快速,体积小,重量轻,直流电动机具有优良的调速特性,调速平滑、方便,调整围广;过载能力强,能承受频繁的冲击负载,可实现频繁的无级快速启动、制动和反转,能满足各种不同的特殊运行要求,价格便宜。方案二:采用步进电机。步进电机是一种将电脉
13、冲信号转换成角位移或线位移的精密执行原件。控制方便,体积小,灵活性和可靠性高,具有瞬时启动和急速停止的优越性,比较适合本系统控制精度高的特点。但步进电机的抖动比较大,输出力矩较低,随转速的升高而下降,且在较高转速时会急剧下降,其转速较低,不适用于小车等有一定速度要求的系统,价格还比较昂贵,所以这里不采用此方案。由于直流电机价格便宜、控制简单,因此本设计用方案一。(4)电动机驱动模块的选择方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速目的。但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵,且可能存在干扰。更主要的问题在于一般电动机的电阻比较小,但电流很大,分压不仅会降
14、低效率,而且实现很困难。 方案二:采用继电器对电动机的开与关进行控制,通过控制开关的切换速度实现对小车的速度进行调整。这个电路的优点是电路较为简单,缺点是继电器的响应时间长,易损坏,寿命较短,可靠性不高。方案三:采用专用电机驱动芯片L298作为电机驱动芯片。L298中有两套H桥电路,刚好可以控制两个电机。它的使能端可以外接高低电平,也可以利用单片机进行软件控制,极大地满足各种复杂电路需要。L298的驱动功率较大,在646V的电压下,可以提供2A的额定电流,并且具有过热自动关断和电流反馈检测功能,安全可靠。基于以上的分析,建议电动机驱动电路选择方案三。(5)循迹传感器的选择方案一:用光敏电阻组成
15、光敏探测器。光敏电阻的阻值可以跟随周围环境光线的变化而变化。当光线照射到白线上面时,光线发射强烈,光线照射到黑线上面时,光线发射较弱。因此光敏电阻在白线和黑线上方时,阻值会发生明显的变化。将阻值的变化值经过比较器就可以输出高低电平。但是这种方案受光照影响很大,不能够稳定的工作。方案二:用RPR220型光电对管。RPR220是一种一体化反射型光电探测器,其发射器是一个砷化镓红外发光二极管,而接收器是一个高灵敏度,硅平面光电三极管。RPR220其具有如下特点:塑料透镜可以提高灵敏度。置可见光过滤器能减小离散光的影响。体积小,结构紧凑。当发光二极管发出的光反射回来时,三极管导通输出低电平。此光电对管
16、调理电路简单,工作性能稳定。综上所述,循迹传感器选用RPR220光电对管,经济实惠,使用方便,精确度高。3 系统硬件设计3.1 自动循迹小车硬件设计自动循迹小车的硬件电路主要由稳压电路模块、电机驱动模块、循迹模块、控制模块等组成,循迹小车硬件电路图如图3.1所示。图3.1 循迹小车硬件电路图 稳压模块将7.2V电压降到5V给单片机、循迹模块以与L298芯片供电,而7.2V电压则作为电机的驱动电压,时钟电路采用12Mhz晶振,提供单片机各种微操作的时间基准,复位电路用于使单片机的片电路初始化,循迹电路由4组RPR220型光电对管和LM393电压比较器构成,检测到黑线时输出高电平给单片机,在白线上
17、时则输出低电平信号,单片机根据检测到这个信号相应的控制2个电动机正反转或加减速等等。3.2 单片机控制器模块设计STC89C52是一种低功耗、高性能CMOS8位微控制器,具有8K系统可编程Flash存储器。在单芯片上,拥有灵巧的8位CPU和系统可编程Flash。具有以下标准功能:8k字节Flash,512字节RAM,32位I/O口,看门狗定时器,置4KB EEPROM,MAX810复位电路,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口。另外STC89C52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继
18、续工作。掉电保护方式下,RAM容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。最高运作频率35Mhz,6T/12T可选。 为了使系统设计简单,本系统只需要复位电路和晶振电路就能满足控制要求,其中复位操作完成单片机片电路的初始化,使单片机从一确定的状态开始运行,当单片机的复位引脚RST出现5ms以上高电平时单片机就完成了复位操作;时钟电路就是在引脚XTAL1和XTAL2外接晶体振荡器构成部振荡方式,部振荡方式所得的时钟信号比较稳定,实用电路中使用较多。单片机模块如图3.2所示。 图3.2 单片机模块51单片机部有P0、P1、P2、P3等4个8位双向I/0口,因此外设可直
19、接连接于这几个口线上,而无需另加接口芯片。P0P3的每个端口可以按字节输入和输出,也可以按位进行输入输出,用于位控制十分方便。P0:P0口为三态双向口,能带8个TTL电路,对P0端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0不具有部上拉电阻,需要外接上拉电阻。P1:P1口是一个具有部上拉电阻的8 位双向I/O 口,P1 输出缓冲器能驱动4 个TTL逻辑电平。对P1 端口写“1”时,部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于部电阻的原因,将输出电流(IIL)。此外,P1.0和P1.1
20、分别作定时器/计数器2的外部计数输入(P1.0/T2)和定时器/计数器2 的触发输入(P1.1/T2EX)。在flash编程和校验时,P1口接收低8位地址字节。P2:P2口为一个部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的容。P2口在FLASH编
21、程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。STC89C52主要功能如表3.1所示。表3.1 STC89C52主要功能主要功能特性兼容MCS51指令系统8K可反复擦写Flash ROM32个双向I/O口256x8bit部RAM3个16位可编程定时/计数器中断时钟频率0-24MHz2个串行中断可编程UART串行通道2个外部中断源共6个中断源2个读写中断口线3级加密位低功耗空闲和掉电模式软件
22、设置睡眠和唤醒功能3.3 稳压电路模块稳压电路由L7805和电容组成,其特点如下:最大输入电压可达35V,最大输出电流为1.5A,输出电压为5V,热过载保护,短路保护等。由于其输出电压为5V,因此作为单片机的稳压电路芯片非常适宜,而且价格便宜,其输出可直接给单片机供电。输入用7.2V充电电池组,小车供电电池如图3.3所示,7805芯片如图3.4所示,稳压电路模块如图3.5所示。图3.3 小车供电电池图3.4 7805芯片图3.5 稳压电路模块 X7805系列是三端正电源稳压电路,它的封装形式是T0-220。他有一系列固定的电压输出,应用非常广泛。每种类型由于部电流的限制,以与过热保护盒安全工作
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 51 单片机 自动 小车 毕业论文

限制150内