解排列组合问题的十六种常用策略 精选PPT.ppt
《解排列组合问题的十六种常用策略 精选PPT.ppt》由会员分享,可在线阅读,更多相关《解排列组合问题的十六种常用策略 精选PPT.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解排列组合问题的十六种常用策略 第1页,此课件共34页哦三三三三.特殊元素和特殊位置优先特殊元素和特殊位置优先特殊元素和特殊位置优先特殊元素和特殊位置优先策略策略策略策略四四四四.相邻元素捆绑策略相邻元素捆绑策略相邻元素捆绑策略相邻元素捆绑策略五五五五.不相邻问题插空策略不相邻问题插空策略不相邻问题插空策略不相邻问题插空策略六六.定序问题空位插入策略定序问题空位插入策略七七.重排问题求幂策略重排问题求幂策略八八八八.多排问题直排策略多排问题直排策略多排问题直排策略多排问题直排策略九九九九.排列组合混合问题先选后排策略排列组合混合问题先选后排策略排列组合混合问题先选后排策略排列组合混合问题先选后
2、排策略十十十十.小集团问题先整体后局部策略小集团问题先整体后局部策略小集团问题先整体后局部策略小集团问题先整体后局部策略十一.元素相同问题隔板策略二二二二.正难则反总体淘汰策略正难则反总体淘汰策略正难则反总体淘汰策略正难则反总体淘汰策略十二十二.平均分组问题除法策略平均分组问题除法策略一合理分类与准确分步策略十三十三.构造模型策略构造模型策略十四十四.实际操作穷举策略实际操作穷举策略十五十五.分解与合成策略分解与合成策略十六十六十六十六.化归策略化归策略化归策略化归策略第2页,此课件共34页哦一.合理分类与分步策略例例13.13.在一次演唱会上共在一次演唱会上共1010名演员名演员,其中其中8
3、 8人能人能 唱歌唱歌,5,5人会跳舞人会跳舞,现要演出一个现要演出一个2 2人人 唱歌唱歌2 2人伴舞的节目人伴舞的节目,有多少选派方法有多少选派方法?解:10演员中有演员中有5人只会唱歌,人只会唱歌,2人只会跳舞人只会跳舞 3人为全能演员。人为全能演员。以只会唱歌的以只会唱歌的5 5人是否人是否选上唱歌为标准进行分类选上唱歌为标准进行分类.只会唱歌只会唱歌的的5 5人中没有人选上唱歌共有人中没有人选上唱歌共有_种种,只会唱的只会唱的5 5人中只有人中只有1 1人选上唱歌人选上唱歌_种种,只会唱的只会唱的5 5人中只有人中只有2 2人人选上唱歌有选上唱歌有_种,由分类计数原理种,由分类计数原
4、理共有共有_种。种。+第3页,此课件共34页哦本题还有如下分类标准:本题还有如下分类标准:*以以3 3个全能演员是否选上唱歌人员为标准个全能演员是否选上唱歌人员为标准*以以3 3个全能演员是否选上跳舞人员为标准个全能演员是否选上跳舞人员为标准*以只会跳舞的以只会跳舞的2 2人是否选上跳舞人员为标准人是否选上跳舞人员为标准都可经得到正确结果都可经得到正确结果解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。第4页,此课件共34页哦练习题例:例:3 3成人成人2 2小孩乘船游玩小孩乘船游玩,
5、A,A号船最多乘号船最多乘3 3人人,B,B号船最多乘号船最多乘2 2人人,C,C号船只能乘号船只能乘1 1人人,他们任选他们任选2 2只船或只船或3 3只船只船,但小孩不能单独乘一只但小孩不能单独乘一只船船,这这3 3人共有多少乘船方法人共有多少乘船方法.首先人数可以有以下分配首先人数可以有以下分配 A3,B2,C0;A3,B1,C1;A2,B2,C1 分情况讨论分情况讨论 A3,B2,C0 所有可能 减去小孩独乘的可能(只有一种就是两个小孩都在B上)种乘法A2,B2,C1 首先A、B、C上肯定都有一个大人,所以有 种乘法A3,B1,C1 BC上肯定都是一个大人 ,剩下一个大人和两个小孩乘A
6、没得选:种乘法 共计:9+6+12=27种乘座方法。第5页,此课件共34页哦二二.正难则反总体淘汰策略正难则反总体淘汰策略例例11.从从0,1,2,3,4,5,6,7,8,9这十个数字中取出三这十个数字中取出三 个数,使其和为不小于个数,使其和为不小于10的偶数的偶数,不同的不同的 取法有多少种?取法有多少种?解:这问题中如果直接求不小于解:这问题中如果直接求不小于10的偶数很的偶数很 困难困难,可用总体淘汰法。可用总体淘汰法。这十个数字中有这十个数字中有5 5个偶数个偶数5 5个奇数个奇数,所取的三个数含有所取的三个数含有3 3个偶个偶数的取法有数的取法有_,_,只含有只含有1 1个偶数的取
7、法个偶数的取法有有_,_,和为偶数的取法共有和为偶数的取法共有_再淘汰和小于再淘汰和小于10的偶数共的偶数共_符合条件的取法共有符合条件的取法共有_ 9 9013013015015017017035035213213215215024024413413026026+-9-9+有些排列组合问题有些排列组合问题,正面直接考虑比较复杂正面直接考虑比较复杂,而而它的反面往往比较简捷它的反面往往比较简捷,可以先求出它的反面可以先求出它的反面,再从整体中淘汰再从整体中淘汰.第6页,此课件共34页哦1.1.某班里有某班里有4343位同学位同学,从中任抽从中任抽3 3人人,正、正、副班长、团支部书记至少有一人
8、在内的副班长、团支部书记至少有一人在内的抽法有多少种抽法有多少种?练习题2.2.从从4 4名男生和名男生和3 3名女生中选出名女生中选出4 4人参加某个座人参加某个座 谈会,若这谈会,若这4 4人中必须既有男生又有女生,则不人中必须既有男生又有女生,则不同的选法共有同的选法共有_ _ 第7页,此课件共34页哦三三.特殊元素和特殊位置优先策略特殊元素和特殊位置优先策略例例1.由由0,1,2,3,4,5可以组成多少个没有重复数字可以组成多少个没有重复数字 五位奇数五位奇数.解解:由于末位和首位有特殊要求由于末位和首位有特殊要求,应该优先安应该优先安 排排,以免不合要求的元素占了这两个位置以免不合要
9、求的元素占了这两个位置先排末位共有先排末位共有_ 然后排首位共有然后排首位共有_最后排其它位置共有最后排其它位置共有_由分步计数原理得由分步计数原理得=288第8页,此课件共34页哦1.1.7 7种不同的花种在排成一列的花盆里种不同的花种在排成一列的花盆里,若两若两种葵花不种在中间,也不种在两端的花盆里,种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?问有多少不同的种法?练习题第9页,此课件共34页哦四.相邻元素捆绑策略例例2.72.7人站成一排人站成一排 ,其中甲乙相邻且丙丁相其中甲乙相邻且丙丁相 邻邻,共有多少种不同的排法共有多少种不同的排法.甲甲乙乙丙丙丁丁由分步计数原理可得
10、共有由分步计数原理可得共有种不同的排法种不同的排法=480解:可先将甲乙两元素捆绑成整体并看成解:可先将甲乙两元素捆绑成整体并看成 一个复合元素,同时丙丁也看成一个一个复合元素,同时丙丁也看成一个 复合元素,再与其它元素进行排列,复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。同时对相邻元素内部进行自排。要求某几个元素必须排在一起的问题要求某几个元素必须排在一起的问题,可以用可以用捆绑法来解决问题捆绑法来解决问题.即将需要相邻的元素合并即将需要相邻的元素合并为一个元素为一个元素,再与其它元素一起作排列再与其它元素一起作排列,同时同时要注意合并元素内部也必须排列要注意合并元素内部也必
11、须排列.第10页,此课件共34页哦五五.不相邻问题插空策略不相邻问题插空策略例例3 3.一一个个晚晚会会的的节节目目有有4 4个个舞舞蹈蹈,2 2个个相相声声,3 3个个 独独唱唱,舞舞蹈蹈节节目目不不能能连连续续出出场场,则则节节目目的的出出 场场顺顺序序有有多多少少种种?解解:分两步进行第一步排分两步进行第一步排2 2个相声和个相声和3 3个独唱共个独唱共 有有 种,种,第二步将第二步将4 4舞蹈插入第一步排舞蹈插入第一步排好的好的5 5个元素中间包含首尾两个空位共有个元素中间包含首尾两个空位共有种种 不同的方法不同的方法 由分步计数原理,节目的不同顺序共有 种相相相相独独独独独独元素相离
12、问题可先把没有位置要求的元素进行元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端排队再把不相邻元素插入中间和两端第11页,此课件共34页哦某班新年联欢会原定的某班新年联欢会原定的5 5个节目已排成节个节目已排成节目单,开演前又增加了两个新节目目单,开演前又增加了两个新节目.如果如果将这两个新节目插入原节目单中,且两个将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为(新节目不相邻,那么不同插法的种数为()练习题某人射击某人射击8枪,命中枪,命中4枪,枪,4枪命中恰好有枪命中恰好有3枪连在一起的情形的不同种数为(枪连在一起的情形的不同种数为()第12页
13、,此课件共34页哦六六.定序问题空位插入策略定序问题空位插入策略例例4.74.7人排队人排队,其中甲乙丙其中甲乙丙3 3人顺序一定共有多人顺序一定共有多 少不同的排法少不同的排法解:(空位法空位法)设想有)设想有7 7把椅子让除甲乙丙以外把椅子让除甲乙丙以外的四人就坐共有的四人就坐共有 种方法,其余的三个种方法,其余的三个位置甲乙丙共有位置甲乙丙共有 种坐法,则共有种坐法,则共有 种种 方法方法 1第13页,此课件共34页哦(插入法插入法)先排甲乙丙三个人先排甲乙丙三个人,共有共有1 1种排法种排法,再再 把其余把其余4 4四人四人依次依次插入共有插入共有 方法方法练习题1010人身高各不相等
14、人身高各不相等,排成前后排,每排排成前后排,每排5 5人人,要要求从左至右身高逐渐增加,共有多少排法?求从左至右身高逐渐增加,共有多少排法?4*5*6*7第14页,此课件共34页哦七七.重排问题求幂策略重排问题求幂策略例例5.5.把把6 6名实习生分配到名实习生分配到7 7个车间实习个车间实习,共有共有 多少种不同的分法多少种不同的分法解解:完成此事共分六步完成此事共分六步:把第一名实习生分配把第一名实习生分配 到车间有到车间有 种分法种分法.7 7把第二名实习生分配把第二名实习生分配 到车间也有到车间也有7 7种分法,种分法,依此类推依此类推,由分步计由分步计数原理共有数原理共有 种不同的排
15、法种不同的排法允许重复的排列问题的特点是以元素为研究允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地各个元素的位置,一般地n不同的元素没有限不同的元素没有限制地安排在制地安排在m个位置上的排列数为个位置上的排列数为 种种n nm m第15页,此课件共34页哦 某某8 8层大楼一楼电梯上来层大楼一楼电梯上来8 8名乘客名乘客,他们他们 到各自的一层下电梯到各自的一层下电梯,下电梯的方法下电梯的方法()练习题第16页,此课件共34页哦八八.多排问题直排策略多排问题直排策略例例7.87.8人排成前后两排人排成前后
16、两排,每排每排4 4人人,其中甲乙在其中甲乙在 前排前排,丁在后排丁在后排,共有多少排法共有多少排法解解:8人排前后两排人排前后两排,相当于相当于8人坐人坐8把椅子把椅子,可以可以 把椅子排成一排把椅子排成一排.先在前先在前4个位置排甲乙两个位置排甲乙两个特殊元素有个特殊元素有_种种,再排后再排后4个位置上的个位置上的特殊元素有特殊元素有_种种,其余的其余的5人在人在5个位置个位置上任意排列有上任意排列有_种种,则共有则共有_种种.前排后排后排一般地一般地,元素分成多排的排列问题元素分成多排的排列问题,可归结为一排考虑可归结为一排考虑,再分段研究再分段研究.第17页,此课件共34页哦九九.排列
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解排列组合问题的十六种常用策略 精选PPT 排列组合 问题 十六 常用 策略 精选 PPT
限制150内