《2017年南京市栖霞区中考二模数学试卷及答案.doc》由会员分享,可在线阅读,更多相关《2017年南京市栖霞区中考二模数学试卷及答案.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2017年中考数学模拟试卷 (二) 注意事项:1本试卷共6页全卷满分120分考试时间为120分钟考生答题全部答在答题卡上,答在本试卷上无效2请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否及本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上3答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑如需改动,请用橡皮擦干净后,再选涂其他答案答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效4作图必须用2B铅笔作答,并请加黑加粗,描写清楚一、选择题(本大题共6小题,每小题2分,共12分在每小题所给出的四个选项中,恰有一项是
2、符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1下列计算结果等于0的是( )A(1)(1) B(1)(1) C(1)(1)D(1)(1)24 的算术平方根是( )A2 B2 C16 D163如右图所示,该几何体的俯视图是( )(第3题) A B C D 4. 化简可得()AB C D(第6题)(第5题)5如图,点A、B、C在O上,OAB25,则ACB的度数是( )A50 B65 C115 D1356 如图,点A的坐标为(3,),点B的坐标为(6,0),将AOB绕点B按顺时针方向旋转一定的角度后得到AOB,点A的对应点A在x轴上,则点O的坐标为( )A B C D二、填空题(本
3、大题共10小题,每小题2分,共20分不需写出解答过程,请把答案直接填写在答题卡相应位置上)7习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700 000用科学记数法表示为 8使有意义的x的取值范围是 9因式分解:a3a= 10、计算 = 11关于x的方程x23x20的两根为x1,x2,则x1x2x1x2的值为 12小强在最近的5场篮球赛中,得分分别为10、13、9、8、10分若小强下一场球赛得分是16分,则小强得分的平均数、中位数和众数中,发生改变的是 13如图,O的半径为1cm,正六边形ABCDEF内接于O,则图中阴影部分面积为 cm2(结
4、果保留)(第16题)(第13题)14. 已知G是直角三角形ABC的内心,C=90,AC=6,BC=8,则线段CG的长为 15二次函数y=ax2+bx+c(a0)的部分对应值如下表:x320135y708957则二次函数y=ax2+bx+c在x=2时,y= 16如图,点A在双曲线y上,点B在双曲线y(k0)上,ABx轴,过点A作ADx轴于D连接OB,及AD相交于点C,若AC2CD,则k三、解答题(本大题共11小题,共88分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17(7分) 计算:18(7分)解分式方程: 19(7分)共享单车近日成为市民新宠,越来越多的居民选择共享单
5、车作为出行的交通工具,某中学课外兴趣小组为了了解某小区居民每周使用共享单车时间的情况,随机抽取了该小区部分使用共享单车的居民进行调查(问卷调查表如图所示),并用调查结果绘制了图、图两幅每周使用共享单车时间的人数统计图(均不完整),请根据统计图解答以下问题:(1) 本次接受问卷调查的共有 人;在扇形统计图中“D”选项所占的百分比为 ;(2)扇形统计图中,“B”选项所对应扇形圆心角为 度;(3)请补全条形统计图;(4)若该小区共有1200名居民,请你估计该小区使用共享单车的时间在“A”选项的有多少人?20. (8分)某校有A、B、C三个餐厅,甲、乙两名学生各自随机选择其中的一个餐厅用餐 (1)则甲
6、在A餐厅用餐的概率 ;(2)求甲、乙两名学都在A餐厅用餐的概率21(7分)已知2xy=1,且1x2,求y的取值范围22(8分)如图,ABCD的对角线交于点O,点E在边BC的延长线上,且OE=OB,连接DE(1)求证:BDE是直角三角形; (2)如果OECD,试判断BDE及DCE是否相似,并说明理由 (第22题) 23(7分)某长方体包装盒的表面积为146cm2,其展开图如图所示求这个包装盒的体积(第23题)24(8分)如图,已知ABM30,AB20,C是射线BM上一点(1)在下列条件中,可以唯一确定BC长的是 ;(填写所有符合条件的序号)AC13;tanACB;ABC的面积为126(2)在(1
7、)的答案中,选择一个作为条件,画出示意图,求BC的长ABM(第24题)25(8分)某商场经市场调查,发现进价为40元的某童装每月的销售量y(件)及售价x(元)的相关信息如下:售价x(元)60708090销售量y(件)280260240220(1)试用你学过的函数来描述y及x的关系,这个函数可以是(填一次函数、反比例函数或二次函数),求这个函数关系式;(2)售价为多少元时,当月的利润最大?最大利润是多少? 26(9分) (1)如图,在矩形ABCD中,AB4,AD10,在BC边上是否存在点P,使 APD90,若存在,请用直尺和圆规作出点P并求出BP的长(保留作图痕迹)(2)如图,在ABC中,ABC
8、60,BC12,AD是BC边上的高,E、F分别为AB,AC的中点,当AD6时,BC边上是否存在一点Q,使EQF90,求此时BQ的长27(12分)如图,在RtABC中,ACB=90,CA=8,CB=6,动点P从C出发沿CA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原来速度沿AC返回;同时动点Q从点A出发沿AB以每秒1个单位长度向点B匀速运动,当Q到达B时,P、Q两点同时停止运动设P、Q运动的时间为t秒(t0)(1)当t为何值时,PQCB?(2)在点P从C向A运动的过程中,在CB上是否存在点E使CEP及PQA全等?若存在,求出CE的长;若不存在,请说明理由;备用图(2)(3)伴
9、随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QBBCCP于点F当DF经过点C时,求出t的值备用图(1)2017年中考数学模拟试卷(二)评分细则一、 选择题(每题2分,共12分) 1.B 2. A 3. D 4. B 5. C 6. B二、填空题(每题2分,共20分)7. 1.17107 8. x 9. a(a1)(a1) 10. 11. 5 12.中位数 13. 14. 2 15. 8 16. 9三、解答题 17. (7分)原式=2+31 4分 =4 7分 18. (7分)方程的两边同乘(x3), 1分得:3xx3, 2分解得: x3, 5分 检验:把x=3代入(x3)0
10、,x3是原方程的增根 6分 即原方程无解 7分 19. (7分)(1)100人,10%; 2分 (2)72; 3分 (3)10020501020(人),条形统计图中“A”选项所对应的人数是20人 (补图略)(计算1分,图1分) 5分 (4)201001200240(人6分 答:估计该小区居民使用共享单车的时间在“A”选项的有240人 7分 20. (8分) (1) 2分(2) 开始 甲: A B C 乙: A B C A B C A B C 4分结果:(A、A)(A、B)(A、C)(B、A)(B、B)(B、C)(C、A)(C、B)(C、C)共有9种等可能结果。6分甲、乙两名学生都在A餐厅用餐的
11、结果有1种,P (甲、乙两名学生在同一个餐厅用餐)= 8分 21. (7分)由2xy=1,得 x= 2分 则由1x2得: 4分 解得:3y3 7分 (其他解法酌情给分. 用1和2直接代入求得3y3只得2分) 22. (8分) (1)四边形ABCD是平行四边形,OB=OD, 1分 OE=OB, OE=OD, 2分 OBE=OEB,ODE=OED, OBE+OEB+ODE+OED=180, BED=OEB+OED=90,DEBE,即BDE是直角三角形; 4分 (2)BDE及DCE相似 5分OECD,CEODCE=CDEDCE=90,CEO=CDE, 6分 OBE=OEB,DBE=CDE, 7分 B
12、ED=DEC=90,BDEDCE 8分(其他解法酌情给分. )23(7分) 设高为x cm,则长为(132x)cm,宽为(142x)cm由题意,得 (132x)(142x)+(142x)xx(132x)2146,3分 解得:x12,x29(舍去) 5分 长为:9cm,宽为:5cm长方体的体积为:952=90cm3 7分 答:这个包装盒的体积为90cm3 24. (8分)(1)(每个1分,多写不得分)2分 (2)方案一:选 作ADBC于D, 则ADBADC903分 在RtABD中,ADB90, ADABsinB10,BDABcosB105分 在RtACD中,ADC90, CD6分 BCBDCD1
13、0 8分 方案二:选 作CEAB于E,则BEC90由SABCABCE得CE12.6 在RtBEC中,BEC90, BC25.2 8分25.(8分) (1)一次函数, 1分 设该一次函数为y=k x+b,代入(60,280)和(70,260),解得k=2,b=400, y=2x+400, 3分 将(80,240),(90,220)代入上式等式成立; 4分 (2)设月利润为w元,则w=(x40) y,即w=(x40) (2x+400), 5分 配方得:w=2(x120)2+12800, 6分 20,当x=120时,w有最大值128007分 答:当售价定为120元时,利润最大,最大值为12800元
14、8分26. (9分) (1)如图所示,点P1、P2为所求的点;(保留作图痕迹)2分 在矩形ABCD中,连接AP1、DP1,AD=BC=10,AB=CD=4, 设BP1=x,则P1C=10x, AP1D=90,AP1B+CP1D=90, BAP1+AP1B=90,BAP1=CP1D,3分 又B=C=90,ABP1P1CD, 4分 ,5分 解得:x1=2,x2=8,BP的长是2或86分 (2)如图,EF分别为AB、AC的中点,EFBC,EF=BC=6, AD=6,ADBC,EF及BC间距离为3, 以EF为直径的O及BC相切, 7分 BC上符合条件的点Q只有一个,记O及BC相切于点Q, 连接OQ,过
15、点E作EGBC,垂足为G, EG=OE=3,四边形EOQG为正方形, 8分 在RtEBG中,B=60,EG=3,BG=,BQ=3+ 9分图 27.(12分) (1)如图1,CP=AQ=t,则AP=8t,在RtABC中,由勾股定理可得AB=10,1分 由PQCB可得,即, 3分 解得t=,所以当t=时,PQCB 4分 (2) 存在,如图2,由题意可知CP=AQ=t,又PCE =90,要使CEP及PQA全等,只有PQA=90 这一种情况,此时CE=PQ,PE= AP,由PQABCA可得, 即,解得t=, 6分 则PE=8t=,在RtPCE中,由勾股定理可得CE=; 8分 (或由PCEACB得,即,解得CE=) (3)当P由C向A运动时,CQ=CP=AQ=t,可得QCA=QAC, 所以QCB=QBC,所以CQ=BQ=t,所以BQ=AQ=AB, 即AB=2t,解得t=5; 10分 如图3,当P由A向C运动时,过Q作QGCB交CB于点G, CQ=CP=16t,BQ=10t,则,即,所以GQ=(10t), 同理可求得BG=(10t),所以GC=6(10t), 在RtCGQ中,由勾股定理可得:CG2+GQ2=CQ2, 即6(10t)2+(10t)2=(16t)2,解得t=1012分 综上可知满足条件的t的值为5和10第 7 页
限制150内