2018浙江高考数学知识点.doc
《2018浙江高考数学知识点.doc》由会员分享,可在线阅读,更多相关《2018浙江高考数学知识点.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2018高考数学知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么?注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 2. 注意下列性质:3. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。)原命题及逆否命题同真、同假;逆命题及否命题同真同假。 7. 对映射的概念了解吗?映射f:AB,是否注意到A中元素的任意性和B中及之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,A中元素不可剩余,允许B中有元素剩余。)
2、8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域? 义域是_ 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (反解x;互换x、y;注明定义域) 13. 反函数的性质有哪些? 互为反函数的图象关于直线yx对称; 保存了原来函数的单调性、奇函数性; 14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性? 15. 如何利用导数判断函数的单调性?值是( ) A. 0
3、B. 1C. 2D. 3 a的最大值为3) 16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义 域关于原点对称) 注意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数及奇函数的乘积是奇函数。 17. 你熟悉周期函数的定义吗?函数,T是一个周期。) 18. 你掌握常用的图象变换了吗? 注意如下“翻折”变换: 19. 你熟练掌握常用函数的图象和性质了吗? 的双曲线。 应用:“三个二次”(二次函数、二次方程、二次不等式)的关系二次方程 求闭区间m,n上的最值。 求区间定(动),对称轴动(定)的最值问题。 一元二次方程根的分布问题
4、。 又如:若f(a+x)= -f(a-x), f(b+x)= f(b-x),则,f(x+2a-2b)=fa+(x+a-2b) (恒等变形) = -fa-(x+a-2b) f(a+x)=-f(a-x) = - f(-x+2b) (恒等变形) = -fb+(-x+b) (恒等变形) =-fb-(-x+b) f(b+x)=f(b-x) =-f(x) 2a-2b为半周期 由图象记性质! (注意底数的限定!) 利用它的单调性求最值及利用均值不等式求最值的区别是什么? 20. 你在基本运算上常出现错误吗? 21. 如何解抽象函数问题? (赋值法、结构变换法) 22. 掌握求函数值域的常用方法了吗? (二次
5、函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。) 如求下列函数的最值:23. 基本初等函数导数公式: 23. 你记得弧度的定义吗?能写出圆心角为,半径为R的弧长公式和扇形面积公式吗? 24. 熟记三角函数的定义,单位圆中三角函数线的定义 25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗? y=tanx (x,y)作图象。 27. 在三角函数中求一个角时要注意两个方面先求出某一个三角函数值,再判定角的范围。 28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗? 29. 熟练掌握三角函数图象变换了吗
6、? (平移变换、伸缩变换) 图象? 30. 熟练掌握同角三角函数关系和诱导公式了吗?“奇”、“偶”指k取奇、偶数。 A. 正值或负值B. 负值C. 非负值D. 正值 31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系: 应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。) 具体方法: (2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式 (4)形的变换:统一函数形式,注意运用代数运算。32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形? 在三角形ABC中,sin(A+B)=si
7、nC,cos(A+B)=-cosC,且角A,B,C范围是 (应用:已知两边一夹角求第三边;已知三边求角。) 34. 不等式的性质有哪些? 答案:C 35. 利用均值不等式:值?(一正、二定、三相等) 注意如下结论: 36. 不等式证明的基本方法都掌握了吗? (比较法、分析法、综合法、数学归纳法等) 并注意简单放缩法的应用。(移项通分,分子 分母因式分解,x的系数变为1,穿轴法解得结果。)38. 用“穿轴法”解高次不等式“奇穿,偶切”,从最大根的右上方开始 39. 解含有参数的不等式要注意对字母参数的讨论 40. 对含有两个绝对值的不等式如何去解? (找零点,分段讨论,去掉绝对值符号,最后取各段
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 浙江 高考 数学 知识点
限制150内