第19章-一次函数全章教案(共13个).docx
《第19章-一次函数全章教案(共13个).docx》由会员分享,可在线阅读,更多相关《第19章-一次函数全章教案(共13个).docx(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、科目数学年级七年级班级时间2016年 月 日1911 变量及函数教学目标(一)教学知识点 认识变量、常量 学会用含一个变量的代数式表示另一个变量(二)能力训练要求 经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点 逐步感知变量间的关系(三)情感及价值观要求 积极参及数学活动,对数学产生好奇心和求知欲 形成实事求是的态度以及独立思考的习惯教材分析教学重点:认识变量、常量 用式子表示变量间关系教学难点: 用含有一个变量的式子表示另一个变量实施教学过程设计 一提出问题,创设情境 1、同学们,我们生活在美丽的世界里,万物都在变化,万物因变化而美丽,事物因变化而神奇。 2、
2、展示章前图情景问题:一辆汽车以60千米小时的速度匀速行驶,行驶里程为s千米行驶时间为t小时 请同学们根据题意填写下表:t/时12345s/千米 在以上这个过程中,变化的量是_没有变化的量是_ 试用含t的式子表示s 通过本节课的学习,相信大家一定能够解决这些问题 二导入新课 师我们首先来思考上面的几个问题,可以互相讨论一下,然后回答 生从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶260千米,即120千米,3小时行驶360千米,即180千米,4小时行驶460千米,即240千米,5小时行驶560千米,即300千米因此行驶里程s千米及时间t小时之间有关系:s=60t其中里程s及
3、时间t是变化的量,速度60千米小时是不变的量 师很好!谢谢你正确的阐述 这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的是按照某种规律变化的,如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60千米小时 活动一 活动内容设计:电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各为多少元? 设一场电影售票x张,票房收入y元怎样用含x的式子表示y?2你见过水中的涟漪吗?如右图,圆形水波慢慢地扩大。在这一过程中,当圆的半径r分别为10cm,
4、20cm,30cm时,圆的面积s分别为多少?用含r的式子表示s.3. 用10m长的绳子围成一个矩形.当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?用含x的式子表示y. 设计意图: 让学生熟练从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个变化的量 教师活动: 引导学生通过合理、正确的思维方法探索出变化规律 学生活动: 在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论活动结论: 第一场电影票房收入:15010=1500(元) 第二场电影票房收入:20510=2050(元) 第三场电影票房收
5、入:31010=3100(元) 关系式:y=10x当r=10 cm时, 当r=20 cm时,当r=30 cm时,关系式:3.当边长为3 m时,邻边长y为:5-3=2 m 当边长为3.5 m时,邻边长y为:5-3.5=1.5 m当边长为4 m时,邻边长y为:5-4=1 m 当边长为4.5 m时,邻边长y为:5-4.5=0.5 m 关系式:y=5-x 师通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量称之为常量如上述四个过程中,时间t、里程s、售出票数x、票房收入y、
6、圆的半径r、圆的面积s、矩形边长x、邻边长y都是变量而速度60千米小时、票价10元、圆周率 、绳长10 m都是常量 随堂练习指出下列问题中的变量和常量: (1)某市的自来水价为4元/t.现要抽取若干户居民 调查水费支出情况,记某户月用水量为x t.月应 交水费为y元。 (2)某地手机通话费为0.2元/min.李明在手机话费卡中存入30元,记此后他的手机通话时间为 t min,话费卡中的余额为w元。 (3)水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长及直径之比)为.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本. 拓展提高课
7、后思考题、练习题1、万盛报每份1.5元,购买万盛报所需钱数y(元)及所买份数x之间的关系是 ,其中 是常量, 是变量。 2、在圆的周长公式C=2r中,常量是 ,变量是 。3、指出下列关系式中的常量及变量:(1) y=5-3x (2) 4、已知直线m、n之间的距离是3,ABC的顶点A在直线m上,边BC在直线n上,求ABC得面积s和BC边的长x之间的关系式,并指出其中的变量和常量。 5、汽车在匀速行驶的过程中,若用s表示路程,v表示速度, t表示时间,那么对于等式s=vt,下列说法正确的是( ) A.s及v是变量,t是常量 B.t及s是变量,v是常量 C.t及v是变量,s是常量 D.s、v、t三个
8、都是变量 6、一种苹果的销售数量x(千克)及销售额y(元)的关系如下: 数量x(千克)12345销售额y(元)2.14.26.38.410.5(1)上表反映了那两个变量之间的关系; (2)请估计销售量为15(千克)时销售额y是多少? 活动及探究瓶子或罐头盒等物体常如下图那样堆放试确定瓶子总数y及层数x之间的关系式 过程:要求变量间关系式,需首先知道两个变量间存在的规律是什么不妨尝试堆放,找出规律,再寻求确定关系式的办法 结论:从题意可知: 堆放层,总数y=1; 堆放层,总数y=1+2; 堆放层,总数y=1+2+3 堆放x层,总数y=1+2+3+x 即教学反思科目数学年级七年级班级时间2014年
9、 月 日变量及函数(2)教学目标知识目标: 1. 在经历函数意义的基础上,理解函数的概念,能分清函数实 例中出现的常量、变量、自变量及函数; 2.能从实际例子中提炼出函数关系式,并会确定自变量的取值 范围. 过程及方法:通过观察、讨论、归纳等活动,体会函数的模型思想. 情感态度及价值观: 1.积极参及活动,培养学习兴趣;2.形成合作交流的意识及独立思考的习惯.教材分析教学重点: 1.掌握确定函数关系的方法; 2.确定自变量的取值范围. 教学难点: 认识函数、领会函数的意义.实施教学过程设计一、提出问题,创设情境 我们来回顾一下上节课所研究的每个问题中是否各有两个变化?同一问题中的变量之间有什么
10、联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢? 这将是我们这节研究的内容二、导入新课 首先回顾一下上节活动中的两个问题思考它们每个问题中是否有两个变量,变量间存在什么联系活动中四个问题都有两个变量问题(1)中,观察填出的表格可以发现:t及s是两个变量,每当t取定一个值时,s就有唯一确定的值及其对应 问题(2)中,可以看出:x及y是两个变量,每当x取定一个值时,y就有唯一确定的值及其对应问题(3)中,可以发现:r及s是两个变量,每当r取定一个值时,s就有唯一确定的值及其对应 问题(4)中,可以看出:x及y是两个变量,每当x取定一个值时,y就有唯一确定的值及其对应 由以
11、上回顾我们可以归纳这样的结论: 上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值及它对应年份人口数亿19841034198911061994117619991252 其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗? (2)在下面的我国人口数统计表中,年份及人口数可以记作两个变量x及y,对于表中每个确定的年份(x),都对应着个确定的人口数(
12、y)吗? 通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值及其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y归纳: 1、都有两个变量; 2、其中的一个变量取定一个值,另一个变量的值也唯一确定。 一般地,在一个变化过程中,如果有两个变量x及y,并且对于x的每个确定的值,y都有唯一确定的值及其对应,那么我们就说x是自变量(independentvariable),y是x的函数(function)如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值 在心电图中,谁是自变量?谁是函数?(时间x是自变量,人口数y是x的函数.)人口数统计表
13、中,谁是自变量?谁是函数?(年份x是自变量,人口数y是x的函数)当x=2010时,函数值是多少?y=13.71注意:(1)函数是变量,例如:y=3x, y是可以随着x的变化而变化的量,变量y是变量x的函数;(2)函数值是变量所取的某个具体数值,一个函数可能有许多不同的函数值。如:x=1时,函数y=3x的函数值为3,x=-2时,函数y=3x的函数值为-6.三、应用新知例1 一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为01L/km 写出表示y及x的函数关系式 指出自变量x的取值范围 汽车行驶200km时,油桶中还有多少汽油?结论:
14、 行驶里程x是自变量,油箱中的油量y是x的函数 行驶里程x时耗油为:0.1x;油箱中剩余油量为:50-0.1x; 所以函数关系式为:y=50-0.1x 仅从式子y=50-01x上看,x可以取任意实数,但是考虑到x代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为01x,它不能超过油箱中现有汽油50L,即01x50,x500 因此自变量x的取值范围是: 0x500 汽车行驶200km时,油箱中的汽油量是函数y=50-01x在x200时的函数值,将x=200代入y=50-01x得: y=50-01200=30汽车行驶200km时,油箱中还有30升汽油关于函数自变量的取值范围: 1实际问题
15、中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数及这排的排数的函数关系式,自变量的取值有什么限制。注意:自变量取值范围的确定,不仅要考虑函数关系式的意义,而且还要注意问题的实际意义2用数学式子表示的函数的自变量取值范围例求下列函数中自变量x的取值范围 (1)y=3xl (2)y2x27 (3)y= (4)y= 分析:用数学表示的函数,一般来说,自变量的取值范围是使式子有意义的值,对于上述的第(1)(2)两题,x取任意实数,这两个式子都有意义,而
16、对于第(3)题,(x2)必须不等于0式子才有意义,对于第(4)题,(x2)必须是非负数式子才有意义 我们在巩固函数意义理解认识及确立函数关系式基础上,又该学会如何确定自变量取值范围和求函数值的方法知道了自变量取值范围的确定,不仅要考虑函数关系式的意义,而且还要注意问题的实际意义四、随堂练习课本74页练习1、2五、小结 本节课我们通过回顾思考、观察讨论,认识了自变量、函数及函数值的概念,并通过两个活动加深了对函数意义的理解,学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力六、作业:习题191 1、2、3、4题活动及探究 1、小明去商店为美术小组买宣纸和毛笔,
17、宣纸每张元,毛笔每支元,商店正搞优惠活动,买一支毛笔赠一张宣纸小明买了10支毛笔和x张宣纸,则小明用钱总数y(元)及宣纸数x之间的函数关系是什么? 根据题意可知: 当小明所买宣纸数x小于等于10张时,所用钱数为:y=510=50(元) 当小明所买宣纸数x大于10张时,所用钱数为:y=50+(x-10)3=3x+20(元) 结果: 当010时 y=3x+202、 为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x 10),应交水费y元,请用方程的知识来求有关x和y的关系式
18、,并判断其中一个变量是否为另一个变量的函数?(参考答案:Y=1.8x-6或)2、如图(二),请写出等腰三角形的顶角y及底角x之间的函数关系式*3如图(三),等腰直角三角形ABC边长及正方形MNPQ的边长均为l0cm,AC及MN在同一直线上,开始时A点及M点重合,让ABC向右运动,最后A点及N点重合。试写出重叠部分面积y及长度x之间的函数关系式教学反思科目数学年级七年级班级时间2014年 月 日函数的图像(1)教学目标(一)知识及技能1、学会观察、分析函数图象,提高识图能力、分析函数图象信息能力,2、学会如何使用这种工具讨论函数.(二)过程及方法1、提高识图能力、分析函数图象信息能力2、体会数形
19、结合思想,并利用它解决问题,提高解决问题能力(三)情感、态度及价值观1、体会数学方法的多样性,提高学习兴趣2、认识数学在解决问题中的重要作用从而加深对数学的认识教材分析教学重点:初步掌握画函数图象的方法;通过观察、分析函数图象来获取信息教学难点:分析概括图象中的信息实施教学过程设计一、知识回顾1、一般地,在一个变化过程中,如果有两个变量x及y,并且对于x每一个确定的值,y都有唯一确定的值及其对应,那么我们就说x是( ),y是x是( )如果当x=a时,y=b,那么b叫做当自变量x为a时的( )2、已知三角形的第一边长为a厘米,第二边长为第一边的2倍,第三边长为8厘米,周长为C厘米,请找出周长C及
20、边长a的函数关系式。有些问题中的函数关系很难列式子表示,但我们可以通过图象来直观反映,比如心电图直观地反映心脏生物电流及时间的关系;抛物线直观地反映了篮球的高度及水平距离之的函数关系, 即使对于能列式表示的函数关系,如果也能画图表示,则会使函数关系更清晰。二、 探究新知活动一:正方形面积 S 及边长 x 之间的函数解析式为 S=x2,根据问题的实际意义,可知自变量x的取值范围是x0,我们还可以利用在坐标系中画图的方法来表示s及x的关系。想一想:怎样确定满足函数关系的点的坐标?取一些自变量的值,计算出相应的函数值 自变量x 的一个确定的值及它所对应的唯一的函数值S,是否唯一确定了一个点(x,S)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 19 一次 函数 教案 13
限制150内