概率经典例题及解析、近年高考题50道带答案【精选】.doc





《概率经典例题及解析、近年高考题50道带答案【精选】.doc》由会员分享,可在线阅读,更多相关《概率经典例题及解析、近年高考题50道带答案【精选】.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【经典例题】【例1】(2012湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆在扇形OAB内随机取一点,则此点取自阴影部分的概率是A1- B- C D【答案】A【解析】令OA=1,扇形OAB为对称图形,ACBD围成面积为S1,围成OC为S2,作对称轴OD,则过C点S2即为以OA为直径的半圆面积减去三角形OAC的面积,S2=()2-=在扇形OAD中为扇形面积减去三角形OAC面积和,=12-=,S1+S2=,扇形OAB面积S=,选A【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂
2、漆面数为X,则X的均值E(X)()A. B. C. D. 【答案】B【解析】X的取值为0,1,2,3且P(X0),P(X1),P(X2),P(X3),故E(X)0123,选B.【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A. B. C. D. 【答案】C【解析】设第一串彩灯在通电后第x秒闪亮,第二串彩灯在通电后第y秒闪亮,由题意满足条件的关系式为2xy2.根据几何概型可知,事件全体的测度(面积)为1
3、6平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为.【例4】(2009江苏)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 . 【答案】0.2【解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2【例5】(2013江苏)现有某类病毒记作XmYn,其中正整数m,n(m7,n9)可以任意选取,则m,n都取到奇数的概率为_【答案】【解析】基本事件共有7963种,m可以取1,3,5
4、,7,n可以取1,3,5,7,9.所以m,n都取到奇数共有20种,故所求概率为.【例6】(2013山东)在区间3,3上随机取一个数x,使得|x1|x2|1成立的概率为_【答案】【解析】当x2时,不等式化为x1x21,此时恒成立,|x1|x2|1的解集为.在上使不等式有解的区间为,由几何概型的概率公式得P.【例7】(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数
5、,求X的分布列及数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】;3月5日【解析】设Ai表示事件“此人于3月i日到达该市”(i1,2,13)根据题意,P(Ai),且AiAj(ij)(1)设B为事件“此人到达当日空气重度污染”,则BA5A8.所以P(B)P(A5A8)P(A5)P(A8).(2)由题意可知,X的所有可能取值为0,1,2,且P(X1)P(A3A6A7A11)P(A3)P(A6)P(A7)P(A11),P(X2)P(A1A2A12A13)P(A1)P(A2)P(A12)P(A13),P(X0)1P(X1)P(X2).所以X的分布列为X012
6、P故X的期望E(X)012.(3)从3月5日开始连续三天的空气质量指数方差最大【例8】(2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分每人有且只有一次抽奖机会,每次抽奖中奖及否互不影响,晚会结束后凭分数兑换奖品(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】;方案甲【解析】方法一:(1)由已知得,小明中奖的概率为,小红中奖的概率为,且两
7、人中奖及否互不影响记“这2人的累计得分X3”的事件为A,则事件A的对立事件为“X5”,因为P(X5),所以P(A)1P(X5),即这两人的累计得分X3的概率为.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2)由已知可得,X1B,X2B,所以E(X1)2,E(X2)2,从而E(2X1)2E(X1),E(3X2)3E(X2).因为E(2X1)E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大方法二:(1)由已知得,小明中奖的概率为,小红中奖的概率
8、为,且两人中奖及否互不影响记“这两人的累计得分X3”的事件为A,则事件A包含有“X0”“X2”“X3”三个两两互斥的事件,因为P(X0),P(X2),P(X3),所以P(A)P(X0)P(X2)P(X3),即这两人的累计得分X3的概率为.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:X1024PX2036P所以E(X1)024,E(X2)036.因为E(X1)E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大【例9】(2013浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个
9、黄球得2分,取出一个蓝球得3分(1)当a3,b2,c1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量为取出此球所得分数若E,D,求abc.【答案】321【解析】(1)由题意得,2,3,4,5,6.P(2),P(3),P(4).P(5),P(6),所以的分布列为23456P(2)由题意知的分布列为123P所以E,D122232,化简得解得a3c,b2c,故abc321.【例10】(2009北京理)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概
10、率都是,遇到红灯时停留的时间都是2min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.【答案】;【解析】本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础知识,考查运用概率及统计知识解决实际问题的能力.(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为.(2)由题意,可得可能取的值为0,2,4,6,8(单位:min).事件“”等价于事件“该学生在路上遇到次红灯
11、”(0,1,2,3,4),即的分布列是02468的期望是.【课堂练习】1.(2013广东)已知离散型随机变量X的分布列为X123P则X的数学期望E(X)()A. B2 C. D32.(2013陕西)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常)若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A1 B1 B2 D3在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离大于3的概率为( )A B C DABCDEF4(2009安徽理)
12、考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 A B C D5.(2009江西理)为了庆祝六一儿童节,某食品厂制作了种不同的精美卡片,每袋食品随机装入一张卡片,集齐种卡片可获奖,现购买该种食品袋,能获奖的概率为()A B C D . 6.(2009辽宁文)ABCD为长方形,AB2,BC1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为A B C D 7.(2009上海理)若事件及相互独立,且,则的值等于A B C D8(2013广州)在区间1,5和2,4上分别取一个数
13、,记为a,b,则方程1表示焦点在x轴上且离心率小于的椭圆的概率为()A BC D9已知数列an满足anan1n1(n2,nN),一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,得到的点数分别记为a,b,c,则满足集合a,b,ca1,a2,a3(1ai6,i1,2,3)的概率是( )A BC D10.(2009湖北文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。11.(2013新课标全国)从n个正整数1,2,3,n中任意取出两个不同的数,若取出的两数之和等于5的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精选 概率 经典 例题 解析 近年 考题 50 答案

限制150内