浙教版八年级下第六章反比例函数教案.doc
《浙教版八年级下第六章反比例函数教案.doc》由会员分享,可在线阅读,更多相关《浙教版八年级下第六章反比例函数教案.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课题:6.1反比例函数(1)教学目标:1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量及变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的科学学科的知识,学生理解问题时有一定的难度。教学过程:随着速度的变化,全程所用时间发生怎样的变化?一、 创设情景 探究问题情境1:当路程一定时,速度及时间成什
2、么关系?(svt)当一个长方形面积一定时,长及宽成什么关系?说明这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xym(m为一个定值),则x及y成反比例。这一情境为后面学习反比例函数概念作铺垫。情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:v/(km/h)608090100120t/h(3)速度v是时间t的函数吗?为什么?说明(1)引导学生观察、讨论路
3、程、速度、时间这三个量之间的关系,得出关系式svt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4
4、)实数m及n的积为200,m随n的变化而变化.问题:(1)这些函数关系式及我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y(k为常数,k0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.说明这个情境先引导学生审题列出函数关系式,使之及我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k0.(3)自变量x的取值范围是x0的一切实数.(4)函数值y的取值范围是非零实数.并
5、引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为ykx1(k为常数,k0)的形式,并结合旧知验证其正确性.二、例题教学例1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y;(2)y;(3)y ;(4)y3;(5)y;(6)y2;(7)y.说明这个例题作了一些变动,引导学生充分讨论,把函数关系式如何化成y或ykxb的形式了解函数关系式的变形,知道函数关系式中比例系数的值连同前面的符号,会及一次函数的关系式进行比较,若对反比例函数的定义理解不深刻,常会认为(2)及(4)也是反比例函数,而(2)式等号右边
6、的分母是x1,不是x,(2)式y及x1成反比例,它不是y及x的反比例函数. 对于(4),等号右边不能化成 的形式,它只能转化为的形式,此时分子已不是常数,所以(4)不是反比例函数. 而(7)中右边分母为2x,看上去和(2)类似,但它可以化成,即k,所以(7)是反比例函数. 通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.例2:在函数y1,y,yx1,y中,y是x的反比例函数的有个.说明这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如ykx1的形式. 还有y1通分为y,y、x都是变量,分子不是常量,故不是反比例函数,但变为y1可说成(
7、y1)及x成反比例.例3:若y及x成反比例,且x3时,y7,则y及x的函数关系式为.说明这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.三、拓展练习 1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强
8、p(N/m2)随该物体及地面的接触面积S(m2)的变化而变化.2、下列哪些关系式中的y是x的反比例函数?如果是,比例系数是多少?(1)yx; (2)y; (3)xy20;(4)xy0;(5)x.3、已知函数y(m1)x是反比例函数,则m的值为.说明引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.第3题要引导学生从反比例函数的变式ykx1入手,注意隐含条件k0,求出m值.四、课堂小结 这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)第一页课题:6.1反比例函数(2)教学目标:1.会用待定系数法求反比例函数的解析式.2.通过实例进一步加深对反比例函数的认识,能
9、结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义.3.会通过已知自变量的值求相应的反比例函数的值.运用已知反比例函数的值求相应自变量的值解决一些简单的问题.重点: 用待定系数法求反比例函数的解析式.难点:例3要用科学知识,又要用不等式的知识,学生不易理解.教学过程:一. 复习1、反比例函数的定义:判断下列说法是否正确(对”,错”)2、思考:如何确定反比例函数的解析式?(1)已知y是x的反比例函数,比例系数是3,则函数解析式是_(2)当m为何值时,函数 是反比例函数,并求出其函数解析式关键是确定比例系数!二.新课1. 例2:已知变量y及x成反比例,且当x=2时y=9(1)写出y及x之
10、间的函数解析式和自变量的取值范围。 小结:要确定一个反比例函数的解析式,只需求出比例系数k。如果已知一对自变量及函数的对应值,就可以先求出比例系数,然后写出所要求的反比例函数。2.练习:已知y是关于x 的反比例函数,当x=时,y=2,求这个函数的解析式和自变量的取值范围。3.说一说它们的求法:(1)已知变量y及x-5成反比例,且当x=2时 y=9,写出y及x之间的函数解析式.(2)已知变量y-1及x成反比例,且当x=2时 y=9,写出y及x之间的函数解析式.4. 例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(),通过电流的强度为I(A)。(1)已知一个汽车前灯的电阻为30 ,通过的
11、电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。(2)如果接上新灯泡的电阻大于30 ,那么及原来的相比,汽车前灯的亮度将发生什么变化?在例3的教学中可作如下启发:(1)电流、电阻、电压之间有何关系?(2)在电压U保持不变的前提下,电流强度I及电阻R成哪种函数关系?(3)前灯的亮度取决于哪个变量的大小?如何决定? 先让学生尝试练习,后师生一起点评。三.巩固练习:1.当质量一定时,二氧化碳的体积V及密度p成反比例。且V=5m3时,p=198kgm3(1)求p及V的函数关系式,并指出自变量的取值范围。(2)求V=9m3时,二氧化碳的密度。四.拓展:1.已知y及z成正比例,z及x成
12、反比例,当x=-4时,z=3,y=-4.求:(1)Y关于x的函数解析式;(2)当z=-1时,x,y的值.2.五.交流反思 求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的由欧姆定律得到。六、布置作业:作业本(2)1.1反比例函数课题:6.2反比例函数的图像和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质教学重点和难点本节教学的重点是反比例函数的图象及图象的性质由于反比例函数的图象分两支,给
13、画图带来了复杂性是本节教学的难点教学过程1、情境创设 可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆及交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数反比例函数的图象研究:反比例函数的图象又会是什么样子呢?2、探索活动 探索活动1 反比例函数的图象 由于反比例函数的图象是曲线型的,且分成两支对此,学生第一次接触有一定的难度,因此需要分几个层次来探求: (1)可以先估计例如:位置(图象所在象限、图象及坐标轴的交点等)、趋势(上升、下降等); (2)方法及步骤利用描点作图; 列表:取自变量x的哪些值? x是不为零的任何实数,所以不能取x的值的为零,但仍可以
14、以零为基准,左右均匀,对称地取值。 描点:依据什么(数据、方法)找点?连线:怎样连线? 可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。探索活动2 反比例函数的图象 可以引导学生采用多种方式进行自主探索活动: (1)可以用画反比例函数的图象的方式及步骤进行自主探索其图象; (2)可以通过探索函数及之间的关系,画出的图象 探索活动3 反比例函数及的图象有什么共同特征? 引导学生从通过及一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征反比例函数(k0)的图象是由两个分支组成的曲线。当时,图象在一、三象限:当时,图象在二、四象限。反比例函数(k0)的图象关于直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙教版八 年级 下第 反比例 函数 教案
限制150内