高中新课程数学(新课标人教A版)选修2-3《2.3.1离散型随机变量的均值》教案.doc
《高中新课程数学(新课标人教A版)选修2-3《2.3.1离散型随机变量的均值》教案.doc》由会员分享,可在线阅读,更多相关《高中新课程数学(新课标人教A版)选修2-3《2.3.1离散型随机变量的均值》教案.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、231离散型随机变量的均值教学目标:知识及技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望过程及方法:理解公式“E(a+b)=aE+b”,以及“若B(n,p),则E=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。情感、态度及价值观:承前启后,感悟数学及生活的和谐之美 ,体现数学的文化功能及人文价值。 教学重点:离散型随机变量的均值或期望的概念教学难点:根据离散型随机变量的分布列求出均值或期望授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变
2、量叫做随机变量 随机变量常用希腊字母、等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量及连续型随机变量的区别及联系: 离散型随机变量及连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量 并且不改变其属性(离散型、连续型) 5. 分布列:设离散型随机变量可能取得值为x1,x2,x3,取每一个值xi(i=
3、1,2,)的概率为,则称表x1x2xiPP1P2Pi为随机变量的概率分布,简称的分布列 6. 分布列的两个性质: Pi0,i1,2,; P1+P2+=17.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数是一个随机变量如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k0,1,2,,n,)于是得到随机变量的概率分布如下:01knP称这样的随机变量服从二项分布,记作B(n,p),其中n,p为参数,并记b(k;n,p)8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试
4、验的次数也是一个正整数的离散型随机变量“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么(k0,1,2,, )于是得到随机变量的概率分布如下:123kP称这样的随机变量服从几何分布记作g(k,p)= ,其中k0,1,2,, 二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数的分布列如下45678910P0.020.040.060.090.280.290.22在n次射击之前,可以根据这个分布列估计n次射击的平均环数这就是我
5、们今天要学习的离散型随机变量的均值或期望 根据射手射击所得环数的分布列,我们可以估计,在n次射击中,预计大约有次得4环;次得5环;次得10环故在n次射击的总环数大约为从而,预计n次射击的平均环数约为这是一个由射手射击所得环数的分布列得到的,只及射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平对于任一射手,若已知其射击所得环数的分布列,即已知各个(i=0,1,2,10),我们可以同样预计他任意n次射击的平均环数:1. 均值或数学期望: 一般地,若离散型随机变量的概率分布为x1x2xnPp1p2pn则称 为的均值或数学期望,简称期望2. 均值或数学期望是离散型随机变量的一个特
6、征数,它反映了离散型随机变量取值的平均水平 3. 平均数、均值:一般地,在有限取值离散型随机变量的概率分布中,令,则有,所以的数学期望又称为平均数、均值 4. 均值或期望的一个性质:若(a、b是常数),是随机变量,则也是随机变量,它们的分布列为x1x2xnPp1p2pn于是由此,我们得到了期望的一个性质:5.若B(n,p),则E=np 证明如下:012kn又 ,故若B(n,p),则np三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望解:因为,所以例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一
7、个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望 解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则 B(20,0.9),由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5 所以,他们在测验中的成绩的期望分别是:例3. 根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0. 01该地区某工地上有一台大型设备,遇到大洪水时要损失60 000元,遇到小洪水时要损失10000元为保护设备,有以下3 种
8、方案:方案1:运走设备,搬运费为3 800 元 方案2:建保护围墙,建设费为2 000 元但围墙只能防小洪水方案3:不采取措施,希望不发生洪水试比较哪一种方案好解:用X1 、X2和X3分别表示三种方案的损失采用第1种方案,无论有无洪水,都损失3 800 元,即X1 = 3 800 . 采用第2 种方案,遇到大洪水时,损失2 000 + 60 000=62 000 元;没有大洪水时,损失2 000 元,即同样,采用第 3 种方案,有于是, EX13 800 , EX262 000P (X2 = 62 000 ) + 2 00000P (X2 = 2 000 ) = 620000. 01 + 20
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.3.1离散型随机变量的均值 高中 新课程 数学 新课 标人教 选修 2.3 离散 随机变量 均值 教案
限制150内