《高考数学重点难点易错知识点总结复习及例题讲解一.doc》由会员分享,可在线阅读,更多相关《高考数学重点难点易错知识点总结复习及例题讲解一.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高考数学重点难点易错点复习(1):集合的思想及应用集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解及应用.难点磁场()已知集合A=(x,y)|x2+mxy+2=0,B=(x,y)|xy+1=0,且0x2,如果AB ,求实数m的取值范围.案例探究例1设A=(x,y)|y2x1=0,B=(x,y)|4x2+2x2y+5=0,C=(x,y)|y=kx+b,是否存在k、bN,使得(AB)C= ,证明此结论.命题意图:本题主要考查考生对集合及其符号的
2、分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题.属级题目.知识依托:解决此题的闪光点是将条件(AB)C= 转化为AC= 且BC= ,这样难度就降低了.错解分析:此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手.技巧及方法:由集合A及集合B中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b、k的范围,又因b、kN,进而可得值.解:(AB)C= ,AC= 且BC= k2x2+(2bk1)x+b21=0AC= 1=(2bk1)24k2(b21)04k24bk+10,即b21 4x2+(22k)x+(5+2b)=0BC= ,2=(1
3、k)24(52b)0k22k+8b190,从而8b20,即b2.5由及bN,得b=2代入由10和20组成的不等式组,得k=1,故存在自然数k=1,b=2,使得(AB)C= .例2向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人.问对A、B都赞成的学生和都不赞成的学生各有多少人?命题意图:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握.本题主要强化学生的这种能力.属级题目.知识依托:解答本题的闪光点是考生能由题目
4、中的条件,想到用韦恩图直观地表示出来.(为锻炼您的习作能力,巩固复习效果,以下步骤请自行完成)高考数学重点难点复习(2):充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.难点磁场()已知关于x的实系数二次方程x2+ax+b=0有两个实数根、,证明:|2且|2是2|a|4+b且|b|0),若p是q的必要而不充分条件,求实数m的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用
5、,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧及方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件及结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若p是q的必要而不充分条件的等价命题即逆否命题为:p是q的充分不必要条件.p:|1 |2 2 12 1 3 2x10q:x22x+1m20 x(1m)x(1+m)0*p是q的充分不必要条件,不等式|1 |2的解集
6、是x22x+1m20(m0)解集的子集.又m0不等式*的解集为1mx1+m ,m9,实数m的取值范围是9,+ .例2已知数列an的前n项Sn=pn+q(p0,p1),求数列an是等比数列的充要条件.命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性.知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n项和及通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧及方法:由an= 关系式去寻找an及an+1的比值,但同时要注意充分性的证明.(为锻炼您的习作能力,巩固复习效果,以下步骤
7、请自行完成)高考数学重点难点复习(3):运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.难点磁场()三角形ABC中,A(5,1)、B(1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)CAB的平分线AD的长;(3)cosABC的值.案例探究例1如图,已知平行六面体ABCDA1B1C1D1的底面ABCD是菱形,且C1CB=C1CD=BCD.(1)求证:C1CBD.(2)当 的值为多少时,能使A1C平面C1BD?请给出证明.命题意图:本题主要考查考生应用向量法
8、解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角及向量夹角的区别及联系.技巧及方法:利用ab ab=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设 =a, =b, =c,依题意,|a|=|b|, 、 、 中两两所成夹角为,于是 =ab, =c(ab)=cacb=|c|a|cos|c|b|cos=0,C1CBD.(2)解:若使A1C平面C1BD,只须证A1
9、CBD,A1CDC1,由 =(a+b+c)(ac)=|a|2+abbc|c|2=|a|2|c|2+|b|a|cos|b|c|cos=0,得当|a|=|c|时,A1CDC1,同理可证当|a|=|c|时,A1CBD, =1时,A1C平面C1BD.高考数学重点难点复习(4):三个“二次”及其关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题及这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.难点磁场已知对于x的所有实数值
10、,二次函数f(x)=x24ax+2a+12(aR)的值都是非负的,求关于x的方程 =|a1|+2的根的取值范围.案例探究例1已知二次函数f(x)=ax2+bx+c和一次函数g(x)=bx,其中a、b、c满足abc,a+b+c=0,(a,b,cR).(1)求证:两函数的图象交于不同的两点A、B;(2)求线段AB在x轴上的射影A1B1的长的取值范围.命题意图:本题主要考查考生对函数中函数及方程思想的运用能力.属于题目.知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数及形的完美结合.错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口
11、,而忽略了“数”.技巧及方法:利用方程思想巧妙转化.(1)证明:由 消去y得ax2+2bx+c=0=4b24ac=4(ac)24ac=4(a2+ac+c2)=4(a+ c2a+b+c=0,abc,a0,c0,0,即两函数的图象交于不同的两点.(2)解:设方程ax2+bx+c=0的两根为x1和x2,则x1+x2= ,x1x2= .|A1B1|2=(x1x2)2=(x1+x2)24x1x2(为锻炼您的习作能力,巩固复习效果,以下步骤请自行完成)高考数学重点难点复习(5):求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几
12、种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.难点磁场()已知f(2cosx)=cos2x+cosx,求f(x1).案例探究例1(1)已知函数f(x)满足f(logax)= (其中a0,a1,x0),求f(x)的表达式.(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(1)|=|f(0)|=1,求f(x)的表达式.命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属题目.知识依托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域.错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.
13、技巧及方法:(1)用换元法;(2)用待定系数法.解:(1)令t=logax(a1,t0;0a1,t1,x0;0a1,x1,f(x)=log3(x24mx+4m2+m+ ).(1)证明:当mM时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则mM.(2)当mM时,求函数f(x)的最小值.(3)求证:对每个mM,函数f(x)的最小值都不小于1.案例探究例1设计一幅宣传画,要求画面面积为4840 cm2,画面的宽及高的比为(1),画面的上、下各留8 cm的空白,左右各留5 cm空白,怎样确定画面的高及宽尺寸,才能使宣传画所用纸张面积最小?如果要求 ,那么为何值时,能使宣传画所用
14、纸张面积最小?命题意图:本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力,属级题目.知识依托:主要依据函数概念、奇偶性和最小值等基础知识.错解分析:证明S()在区间 上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决.技巧及方法:本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决.解:设画面高为x cm,宽为x cm,则x2=4840,设纸张面积为S cm2,则S=(x+16)(x+10)=x2+(16+10)x+160,将x= 代入上式得:S=5000+44 (8 + ),当8 = ,即= 1)时S取得最小值.此时高:x
15、= =88 cm,宽:x= 88=55 cm.如果 可设 10,f(x)= 是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+)上是增函数.案例探究例1已知函数f(x)在(1,1)上有定义,f( )=1,当且仅当0x1时f(x)0,且对任意x、y(1,1)都有f(x)+f(y)=f( ),试证明:(1)f(x)为奇函数;(2)f(x)在(1,1)上单调递减.命题意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技
16、巧及方法:对于(1),获得f(0)的值进而取x=y是解题关键;对于(2),判定 的范围是焦点.证明:(1)由f(x)+f(y)=f( ),令x=y=0,得f(0)=0,令y=x,得f(x)+f(x)=f( )=f(0)=0.f(x)=f(x).f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减.令0x1x21,则f(x2)f(x1)=f(x2)f(x1)=f( )0x1x20,1x1x20, (为锻炼您的习作能力,巩固复习效果,以下步骤请自行完成)高考数学重点难点复习(8):函数的单调性及奇偶性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮
17、助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.难点磁场()已知偶函数f(x)在(0,+)上为增函数,且f(2)=0,解不等式flog2(x2+5x+4)0.案例探究例1已知奇函数f(x)是定义在(3,3)上的减函数,且满足不等式f(x3)+f(x23)0,设不等式解集为A,B=Ax|1x ,求函数g(x)=3x2+3x4(xB)的最大值.命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧及
18、方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.解:由 且x0,故0x ,又f(x)是奇函数,f(x3)3x2,即x2+x60,解得x2或x3,综上得2x ,即A=x|2x ,B=Ax|1x =x|1xf(0)对所有0, 都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的
19、思想方法.技巧及方法:主要运用等价转化的思想和分类讨论的思想来解决问题.解:f(x)是R上的奇函数,且在0,+)上是增函数,f(x)是R上的增函数.于是不等式可等价地转化为f(cos23)f(2mcos4m),即cos232mcos4m,即cos2mcos+2m20.设t=cos,则问题等价地转化为函数g(t)=t2mt+2m2=(t )2 +2m2在0,1上的值恒(为锻炼您的习作能力,巩固复习效果,以下步骤请自行完成)高考数学重点难点复习(9):指数函数、对数函数问题指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.
20、难点磁场()设f(x)=log2 ,F(x)= +f(x).(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;(2)若f(x)的反函数为f1(x),证明:对任意的自然数n(n3),都有f1(n) ;(3)若F(x)的反函数F1(x),证明:方程F1(x)=0有惟一解.案例探究例1已知过原点O的一条直线及函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线及函数y=log2x的图象交于C、D两点.(1)证明:点C、D和原点O在同一条直线上;(2)当BC平行于x轴时,求点A的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生
21、的分析能力和运算能力.属级题目.知识依托:(1)证明三点共线的方法:kOC=kOD.(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A点坐标.错解分析:不易考虑运用方程思想去解决实际问题.技巧及方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A的坐标.(1)证明:设点A、B的横坐标分别为x1、x2,由题意知:x11,x21,则A、B纵坐标分别为log8x1,log8x2.因为A、B在过点O的直线上,所以 ,点C、D坐标分别为(x1,log2x1),(x2,log2x2),由于log2x1= = 3log8x2,所以OC的斜率:k1=,OD的斜率:k2=
22、 ,由此可知:k1=k2,即O、C、D在同一条直线上.(2)解:由BC平行于x轴知:log2x1=log8x2即:log2x1= log2x2,代入x2log8x1=x1log8x2得:x13log8x1=3x1log8x1,由于x11知(为锻炼您的习作能力,巩固复习效果,以下步骤请自行完成)高考数学重点难点复习(10):函数的图象及其变换函数的图象及性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.难点磁场()已知函数f(x)
23、=ax3+bx2+cx+d的图象如图,求b的范围.案例探究例1对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(ax),(1)求证y=f(x)的图象关于直线x=a对称;(2)若函数f(x)对一切实数x都有f(x+2)=f(2x),且方程f(x)=0恰好有四个不同实根,求这些实根之和.命题意图:本题考查函数概念、图象对称问题以及求根问题.属级题目.知识依托:把证明图象对称问题转化到点的对称问题.错解分析:找不到问题的突破口,对条件不能进行等价转化.技巧及方法:数形结合、等价转化.(1)证明:设(x0,y0)是函数y=f(x)图象上任一点,则y0=f(x0),又f(a+x)=f(ax),f(2ax0)=fa+(ax0)=fa(ax0)=f(x0)=y0,(2ax0,y0)也在函数的图象上,而 =a,点(x0,y0)及(2ax0,y0)关于直线x=a对称,故y=f(x)的图象关于直线x=a对称.(2)解:由f(2+x)=f(2x)得y=f(x)的图象关于直线x=2对称,若x0是f(x)=0的根,则4x0也是f(x)=0的根,由对称性,f(x)=0的四根之和为8.第 13 页
限制150内