高三数学模拟卷及复习资料.doc
《高三数学模拟卷及复习资料.doc》由会员分享,可在线阅读,更多相关《高三数学模拟卷及复习资料.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高级中学高三数学(理科)试题一、选择题:(每小题5分,共60分)1、已知集合A=xR|x|2,B=xZ|x21,则AB=( ) A、1,1 B、2,2 C、1,0,1 D、2,1,0,1,2【答案】C 解:根据题意,|x|22x2,则A=xR|x|2=x|2x2, x211x1,则B=xZ|x21=1,0,1,则AB=1,0,1;故选:C 2、若复数 (aR,i为虚数单位)是纯虚数,则实数a的值为( ) A、3 B、3 C、0 D、 【答案】A 解: = 是纯虚数,则 ,解得:a=3故选A3、命题“x 0R, ”的否定是( ) A、 xR,x2x10 B、 xR,x2x10C、 x0R, D、
2、 x0R, 【答案】A 解:因为特称命题的否定是全称命题, 所以命题“x0R, ”的否定为:xR,x2x10故选:A4、张丘建算经卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?( ) A、18 B、20 C、21 D、25 【答案】C 解:设公差为d,由题意可得:前30项和S30=390=305+ d,解得d= 最后一天织的布的尺数等于5+29d=5+29 =21故选:C5、已知二项式的展开式中常数项为32,则a=( ) A、8 B、8 C、2 D、2【答案】D 解:二项式
3、(x )4的展开式的通项为Tr+1=(a)rC4rx4 r,令4 =0,解得r=3,(a)3C43=32,a=2,故选:D6、函数y=lncosx( x )的大致图象是( ) A、 B、 C、 D、【答案】A 解:在(0, )上,t=cosx是减函数,y=lncosx是减函数,且函数值y0, 故排除B、C;在( ,0)上,t=cosx是增函数,y=lncosx是增函数,且函数值y0,故排除D,故选:A7、 若数列满足,且及的等差中项是5, 等于( B ) (A) (B) (C) (D)8、如图是某几何体的三视图,则该几何体的体积为( ) A、1 B、 C、 D、【答案】B 解:由三视图知几何体
4、是一个四棱锥, 四棱锥的底面是一个平行四边形,有两个等腰直角三角形,直角边长为1组成的平行四边形,四棱锥的一条侧棱及底面垂直,且侧棱长为1,四棱锥的体积是 故选B9、设a0,b0,若2是2a及2b的等比中项,则 的最小值为( ) A、8 B、4 C、2 D、1 【答案】C 解:2是2a及2b的等比中项, 2a2b=4,a+b=2, (a+b)=1,而a0,b0, =( )( + )=1+ + 1+2 =2,当且仅当a=b=1时取等号故选:C10、若函数f(x)=2sin( )(2x10)的图象及x轴交于点A,过点A的直线l及函数的图象交于B、C两点,则( + ) =( ) A、32 B、16
5、C、16 D、32 【答案】D 解:由f(x)=2sin( )=0可得 x=6k2,kZ,2x10 x=4即A(4,0) 设B(x1 , y1),C(x2 , y2)过点A的直线l及函数的图象交于B、C两点B,C 两点关于A对称即x1+x2=8,y1+y2=0则( + ) =(x1+x2 , y1+y2)(4,0)=4(x1+x2)=32故选D11、已知双曲线 =1(a0,b0)的右顶点为A,若双曲线右支上存在两点B,C使得ABC为等腰直角三角形,则该双曲线的离心率e的取值范围是( ) A、(1,2)B、(2,+)C、(1, )D、( ,+)【答案】C 【解析】【解答】解:如图,由ABC为等腰
6、直角三角形,所以BAx=45, 设其中一条渐近线及x轴的夹角为,则45,即tan1,又上述渐近线的方程为y= x,则 1,又e= ,1e ,双曲线的离心率e的取值范围(1, ),故选C12、已知函数f(x)=x+xlnx,若kZ,且k(x1)f(x)对任意的x1恒成立,则k的最大值为( ) A、2 B、3 C、4 D、5【答案】B 解:由k(x1)f(x)对任意的x1恒成立, 得:k ,(x1),令h(x)= ,(x1),则h(x)= ,令g(x)=xlnx2=0,得:x2=lnx,画出函数y=x2,y=lnx的图象,如图示:g(x)存在唯一的零点,又g(3)=1ln30,g(4)=2ln4=
7、2(1ln2)0,零点属于(3,4);h(x)在(1,x0)递减,在(x0 , +)递增,而3h(3)= 4, h(4)= 4,h(x0)4,kZ,k的最大值是3二、 填空题:(每小题5分,共20分)13、若x,y满足 则z=x+2y的最大值为_ 【答案】2 解:由足约束条件 作出可行域如图, 由z=x+2y,得y= + 要使z最大,则直线y= + 的截距最大,由图可知,当直线y= + 过点A时截距最大联立 ,解得 ,A(0,1),z=x+2y的最大值为0+21=2故答案为:2 14、已知向量 =(1,2), ( + ),则向量 在向量 方向上的投影为_ 【答案】 解:由 ( + ),则 (
8、+ )=0,即 2+ =0,则 =丨 丨2 , 向量 在向量 方向上的投影为 =丨 丨= = ,故答案为: 15、斜率为k(k0)的直线l经过点F(1,0)交抛物线y2=4x于A,B两点,若AOF的面积是BOF面积的2倍,则k=_ 【答案】2 【解析】【解答】解:SAOF=2SBOF , yA=2yB , 设AB的方程为x=my+1(m0),及y2=4x联立消去x得y24my4=0,yA+yB=4m,yAyB=4由可得m= ,k=2 。16、定义在上的函数对任意都有,且函数的图象关于(1,0)成中心对称,若满足不等式,则当时,的取值范围是 .【解析】不妨设,则由,知,即,所以函数为减函数因为函
9、数的图象关于成中心对称,所以为奇函数,所以,所以,即因为,而在条件下,易求得,所以,所以,所以,即.三、解答题:17、(本小题满分12分)已知函数 (其中0),若f(x)的一条对称轴离最近的对称中心的距离为 (1)求y=f(x)的单调递增区间; (2) 在ABC中角A、B、C的对边分别是a,b,c满足(2ba)cosC=ccosA,则f(B)恰是f(x)的最大值,试判断ABC的形状 (1) 解: , = ,f(x)的对称轴离最近的对称中心的距离为 ,T=, ,=1, 得: ,函数f(x)单调增区间为 ;(2)解:(2ba)cosC=ccosA,由正弦定理, 得(2sinBsinA)cosC=s
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学模拟 复习资料
限制150内