高三复习高中数学三角函数基础过关习题有答案.doc
《高三复习高中数学三角函数基础过关习题有答案.doc》由会员分享,可在线阅读,更多相关《高三复习高中数学三角函数基础过关习题有答案.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2015年高三复习高中数学三角函数基础过关习题一选择题(共15小题)5(2014宝鸡二模)函数y=2sin(2x+)的最小正周期为()A4BC2D6(2014宁波二模)将函数y=sin(4x)图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()ABx=Cx=Dx=7(2014邯郸二模)已知函数f(x)=2sin(x+),且f(0)=1,f(0)0,则函数图象的一条对称轴的方程为()Ax=0Bx=Cx=Dx=8(2014上海模拟)将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的一条对称轴是()ABC
2、x=Dx=1(2014陕西)函数f(x)=cos(2x)的最小正周期是()ABC2D42(2014陕西)函数f(x)=cos(2x+)的最小正周期是()ABC2D43(2014香洲区模拟)函数是()A周期为的奇函数B周期为的偶函数C周期为2的奇函数D周期为2的偶函数4(2014浙江模拟)函数f(x)=sin(2x+)(xR)的最小正周期为()AB4C2D9(2014云南模拟)为了得到函数y=sinx的图象,只需把函数y=sinx图象上所有的点的()A横坐标伸长到原来的3倍,纵坐标不变B横坐标缩小到原来的倍,纵坐标不变C纵坐标伸长到原来的3倍,横坐标不变D纵坐标伸长到原来的倍,横坐标不变10(2
3、013陕西)设ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则ABC的形状为()A锐角三角形B直角三角形C钝角三角形D不确定11(2013湖南)在锐角ABC中,角A,B所对的边长分别为a,b若2asinB=b,则角A等于()ABCD12(2013天津模拟)将函数y=cos(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式是()Ay=cos()By=cos(2x)Cy=sin2xDy=cos()13(2013安庆三模)将函数f(x)=sin(2x)的图象向左平移个单位,得到g(x)的图象,则g
4、(x)的解析式为()Ag(x)=cos2xBg(x)=cos2xCg(x)=sin2xDg(x)=sin(2x+)14(2013泰安一模)在ABC中,A=60,AB=2,且ABC的面积为,则BC的长为()AB3CD715(2012杭州一模)已知函数,下面四个结论中正确的是()A函数f(x)的最小正周期为2B函数f(x)的图象关于直线对称C函数f(x)的图象是由y=2cos2x的图象向左平移个单位得到D函数是奇函数二解答题(共15小题)18(2014长安区三模)已知函数f(x)=sin(2x)+2cos2x1()求函数f(x)的单调增区间;()在ABC中,a、b、c分别是角A、B、C的对边,且a
5、=1,b+c=2,f(A)=,求ABC的面积19(2014诸暨市模拟)A、B是直线图象的两个相邻交点,且()求的值;()在锐角ABC中,a,b,c分别是角A,B,C的对边,若的面积为,求a的值16(2015重庆一模)已知函数f(x)=cosxsin(x+)cos2x+(1)求f(x)的最小正周期;(2)若f(x)m在上恒成立,求实数m的取值范围17(2014东莞二模)已知函数()求的值;()求f(x)的最大值和最小正周期;()若,是第二象限的角,求sin220(2014广安一模)已知函数f(x)=sin2x+2cos2x+1()求函数f(x)的单调递增区间;()设ABC内角A,B,C的对边分别
6、为a,b,c,且c=,f(C)=3,若向量=(sinA,1)及向量=(2,sinB)垂直,求a,b的值21(2014张掖三模)已知f(x)=sinx2sin2(0)的最小正周期为3()当x,时,求函数f(x)的最小值;()在ABC,若f(C)=1,且2sin2B=cosB+cos(AC),求sinA的值22(2014漳州三模)在ABC中,a,b,c分别是内角A,B,C所对的边,若向量=(1,sinA),=(2,sinB),且()求b,c的值;()求角A的大小及ABC的面积23(2013青岛一模)已知a,b,c为ABC的内角A,B,C的对边,满足,函数f(x)=sinx(0)在区间上单调递增,在
7、区间上单调递减()证明:b+c=2a;()若,证明:ABC为等边三角形24(2012南昌模拟)已知函数 (1)若f()=5,求tan的值;(2)设ABC三内角A,B,C所对边分别为a,b,c,且,求f(x)在(0,B上的值域25(2012河北区一模)已知函数()求f(x)的单调递增区间;()在ABC中,三内角A,B,C的对边分别为a,b,c,已知成等差数列,且=9,求a的值26(2012韶关一模)已知函数f(x)=2cos2x+2sinxcosx1(0)的最小正周期为(1)求f()的值;(2)求函数f(x)的单调递增区间及其图象的对称轴方程27(2012杭州一模)已知函数f(x)=()求f(x
8、)的最小正周期、对称轴方程及单调区间;()现保持纵坐标不变,把f(x)图象上所有点的横坐标伸长到原来的4倍,得到新的函数h(x);()求h(x)的解析式;()ABC中,角A、B、C的对边分别为a、b、c,且满足,h(A)=,c=2,试求ABC的面积28(2011辽宁)ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a()求;()若c2=b2+a2,求B29(2011合肥二模)将函数y=f(x)的图象上各点的横坐标缩短为原来的(纵坐标不变),再向左平移个单位后,得到的图象及函数g(x)=sin2x的图象重合(1)写出函数y=f(x)的图象的一条对称轴方程;(
9、2)若A为三角形的内角,且f(A)=,求g()的值30(2011河池模拟)已知ABC的内角A、B、C的对边分别为a、b、c,向量m=(sinB,1cosB)及向量n=(2,0)的夹角为,求的最大值2015年高三复习高中数学三角函数基础过关习题(有答案)参考答案及试题解析一选择题(共15小题)1(2014陕西)函数f(x)=cos(2x)的最小正周期是()ABC2D4考点:三角函数的周期性及其求法专题:三角函数的图像及性质分析:由题意得=2,再代入复合三角函数的周期公式求解解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x)的最小正周期是,故选B点评:本题考查了三角函数的周期性,
10、以及复合三角函数的周期公式应用,属于基础题2(2014陕西)函数f(x)=cos(2x+)的最小正周期是()ABC2D4考点:三角函数的周期性及其求法专题:三角函数的图像及性质分析:由题意得=2,再代入复合三角函数的周期公式求解解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x+)的最小正周期是,故选:B点评:本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题3(2014香洲区模拟)函数是()A周期为的奇函数B周期为的偶函数C周期为2的奇函数D周期为2的偶函数考点:三角函数的周期性及其求法;正弦函数的奇偶性专题:计算题分析:利用诱导公式化简函数,然后直接求出
11、周期,和奇偶性,确定选项解答:解:因为:=2cos2x,所以函数是偶函数,周期为:故选B点评:本题考查三角函数的周期性及其求法,正弦函数的奇偶性,考查计算能力,是基础题4(2014浙江模拟)函数f(x)=sin(2x+)(xR)的最小正周期为()AB4C2D考点:三角函数的周期性及其求法专题:三角函数的图像及性质分析:由条件利用利用函数y=Asin(x+)的周期为,求得结果解答:解:函数f(x)=sin(2x+)(xR)的最小正周期为T=,故选:D点评:本题主要考查函数y=Asin(x+)的周期性,利用了函数y=Asin(x+)的周期为,属于基础题5(2014宝鸡二模)函数y=2sin(2x+
12、)的最小正周期为()A4BC2D考点:三角函数的周期性及其求法专题:三角函数的图像及性质分析:根据y=Asin(x+)的周期等于 T=,得出结论解答:解:函数y=2sin(2x+)的最小正周期为T=,故选:B点评:本题主要考查三角函数的周期性及其求法,利用了y=Asin(x+)的周期等于 T=,属于基础题6(2014宁波二模)将函数y=sin(4x)图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()ABx=Cx=Dx=考点:函数y=Asin(x+)的图象变换专题:三角函数的图像及性质分析:利用函数y=Asin(x+)的图象变换,可求得变换后的
13、函数的解析式为y=sin(8x),利用正弦函数的对称性即可求得答案解答:解:将函数y=sin(4x)图象上各点的横坐标伸长到原来的2倍,得到的函数解析式为:g(x)=sin(2x),再将g(x)=sin(2x)的图象向左平移个单位(纵坐标不变)得到y=g(x+)=sin2(x+)=sin(2x+)=sin(2x+),由2x+=k+(kZ),得:x=+,kZ当k=0时,x=,即x=是变化后的函数图象的一条对称轴的方程,故选:A点评:本题考查函数y=Asin(x+)的图象变换,求得变换后的函数的解析式是关键,考查正弦函数的对称性的应用,属于中档题7(2014邯郸二模)已知函数f(x)=2sin(x
14、+),且f(0)=1,f(0)0,则函数图象的一条对称轴的方程为()Ax=0Bx=Cx=Dx=考点:函数y=Asin(x+)的图象变换专题:三角函数的图像及性质分析:由题意可得 2sin=1,且2cos0,可取=,可得函数f(x)的解析式,从而得到函数 的解析式,再根据z余弦函数的图象的对称性得出结论解答:解:函数f(x)=2sin(x+),且f(0)=1,f(0)0,2sin=1,且2cos0,可取=,函数f(x)=2sin(x+)函数=2sin(x+)=2cosx,故函数图象的对称轴的方程为x=k,kz结合所给的选项,故选:A点评:本题主要考查三角函数的导数,余弦函数的图象的对称性,属于基
15、础题8(2014上海模拟)将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的一条对称轴是()ABCx=Dx=考点:函数y=Asin(x+)的图象变换专题:三角函数的图像及性质分析:由条件根据函数y=Asin(x+)的图象变换规律可得得函数图象对应的函数解析式为y=cosx,再利用余弦函数的图象的对称性求得所得函数图象的一条对称轴方程解答:解:将函数的图象向左平移个单位,可得函数y=cos2(x+)=cos2x的图象;再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象对应的函数解析式为y=cosx,故所得函数的对称轴方程为x=k,kz
16、,故选:C点评:本题主要考查函数y=Asin(x+)的图象变换规律,余弦函数的图象的对称性,属于基础题9(2014云南模拟)为了得到函数y=sinx的图象,只需把函数y=sinx图象上所有的点的()A横坐标伸长到原来的3倍,纵坐标不变B横坐标缩小到原来的倍,纵坐标不变C纵坐标伸长到原来的3倍,横坐标不变D纵坐标伸长到原来的倍,横坐标不变考点:函数y=Asin(x+)的图象变换专题:三角函数的图像及性质分析:由条件根据函数y=Asin(x+)的图象变换规律,可得结论解答:解:把函数y=sinx图象上所有的点的横坐标伸长到原来的3倍,纵坐标不变,可得函数y=sinx的图象,故选:A点评:本题主要考
17、查函数y=Asin(x+)的图象变换规律,属于基础题10(2013陕西)设ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则ABC的形状为()A锐角三角形B直角三角形C钝角三角形D不确定考点:正弦定理专题:解三角形分析:由条件利用正弦定理可得 sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得ABC的形状解答:解:ABC的内角A,B,C所对的边分别为a,b,c,bcosC+ccosB=asinA,则由正弦定理可得 sinBcosC+sinCcosB=sinAsinA,即 sin(B+C)
18、=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,故选B点评:本题主要考查正弦定理以及两角和的正弦公式、诱导公式的应用,根据三角函数的值求角,属于中档题11(2013湖南)在锐角ABC中,角A,B所对的边长分别为a,b若2asinB=b,则角A等于()ABCD考点:正弦定理专题:计算题;解三角形分析:利用正弦定理可求得sinA,结合题意可求得角A解答:解:在ABC中,2asinB=b,由正弦定理=2R得:2sinAsinB=sinB,sinA=,又ABC为锐角三角形,A=故选D点评:本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题12(2013天津模拟)将函数y
19、=cos(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式是()Ay=cos()By=cos(2x)Cy=sin2xDy=cos()考点:函数y=Asin(x+)的图象变换专题:三角函数的图像及性质分析:由条件利用y=Asin(x+)的图象变换规律,可得结论解答:解:将函数y=cos(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数y=cos(x)的图象再将所得图象向左平移个单位,则所得函数图象对应的解析式是y=cos(x+)=cos(x),故选:D点评:本题主要考查y=Asin(x+)的图象变换规律,属于基础题
20、13(2013安庆三模)将函数f(x)=sin(2x)的图象向左平移个单位,得到g(x)的图象,则g(x)的解析式为()Ag(x)=cos2xBg(x)=cos2xCg(x)=sin2xDg(x)=sin(2x+)考点:函数y=Asin(x+)的图象变换专题:计算题;三角函数的图像及性质分析:直接利用平移原则,左加右减上加下减,化简求解即可解答:解:将函数f(x)=sin(2x)的图象向左平移个单位,得到g(x)=sin2(x+)+=sin(2x+)=cos2x,g(x)的解析式:g(x)=cos2x,故选A点评:本题考查三角函数的平移三角函数的平移原则为左加右减上加下减以及诱导公式的应用14
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复习 高中数学 三角函数 基础 过关 习题 答案
限制150内