专题21 图形的旋转(共50题)-(解析版).docx
《专题21 图形的旋转(共50题)-(解析版).docx》由会员分享,可在线阅读,更多相关《专题21 图形的旋转(共50题)-(解析版).docx(121页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021年中考数学真题分项汇编【全国通用】(第01期) 专题21图形的旋转(共50题)一、单选题1(2021湖南永州市中考真题)如图,在平面内将五角星绕其中心旋转后所得到的图案是( )ABCD【答案】C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案【详解】将五角星绕其中心旋转,图中阴影部分的三角形应竖直向下,故选:C【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键2(2021四川广安市中考真题)如图,将绕点逆时针旋转得到,若且于点,则的度数为( )ABCD【答案】C【分析】由旋转的性质可得BAD=55,E=ACB=70,
2、由直角三角形的性质可得DAC=20,即可求解【详解】解:将ABC绕点A逆时针旋转55得ADE,BAD=55,E=ACB=70,ADBC,DAC=20,BAC=BAD+DAC=75故选C【点睛】本题考查了旋转的性质,掌握旋转的性质是本题的关键3(2021江苏苏州市中考真题)如图,在方格纸中,将绕点按顺时针方向旋转90后得到,则下列四个图形中正确的是( )ABCD【答案】B【分析】根据绕点按顺时针方向旋转90逐项分析即可【详解】A、是由关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、是由绕点按顺时针方向旋转90后得到,故B选项符合题意;C、与对应点发生了变化,故C选项不符合题意;D、是
3、由绕点按逆时针方向旋转90后得到,故D选项不符合题意故选:B【点睛】本题考查旋转变换解题的关键是弄清旋转的方向和旋转的度数4(2021天津中考真题)如图,在中,将绕点C逆时针旋转得到,点A,B的对应点分别为D,E,连接当点A,D,E在同一条直线上时,下列结论一定正确的是( )ABCD【答案】D【分析】由旋转可知,即可求出,由于,则可判断,即A选项错误;由旋转可知,由于,即推出,即B选项错误;由三角形三边关系可知,即可推出,即C选项错误;由旋转可知,再由,即可证明为等边三角形,即推出即可求出,即证明,即D选项正确;【详解】由旋转可知,点A,D,E在同一条直线上,故A选项错误,不符合题意;由旋转可
4、知,为钝角,故B选项错误,不符合题意;,故C选项错误,不符合题意;由旋转可知,为等边三角形,故D选项正确,符合题意;故选D【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定利用数形结合的思想是解答本题的关键5(2021湖南邵阳市中考真题)如图,在中,将绕点逆时针方向旋转,得到,连接则线段的长为( )A1BCD【答案】B【分析】根据旋转性质可知,再由勾股定理即可求出线段的长【详解】解:旋转性质可知,故选:B【点睛】此题主要考查旋转的性质和勾股定理求出直角三角形边长,解题关键是根据旋转性质得出是等腰直角三角形6(2021四川达州市中考真题)在平面直角坐标系中,等边如
5、图放置,点的坐标为,每一次将绕着点逆时针方向旋转,同时每边扩大为原来的2倍,第一次旋转后得到,第二次旋转后得到,依次类推,则点的坐标为( )ABCD【答案】C【分析】由题意,点A每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题【详解】解:由题意,点A每6次绕原点循环一周,点在第四象限, ,点的横坐标为,纵坐标为,故选:C【点睛】本题考查坐标与图形变化旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型7(2021浙江衢州市中考真题)如图将菱形ABCD绕点A逆时针旋转得到菱形,当AC平分时,与满足的数量关系是( )ABCD【答案】C【分析】根据菱形的性质可得AB
6、=AC,根据等腰三角形的性质可得BAC=BCA=,根据旋转的性质可得CAC=BAB=,根据AC平分可得BAC=CAC=,即可得出,可得答案【详解】四边形ABCD是菱形,AB=AC,BAC=BCA=,将菱形ABCD绕点A逆时针旋转得到菱形,CAC=BAB=,AC平分,BAC=CAC=,BAC=BAC+BAB=2=,故选;C【点睛】本题考查旋转的性质及菱形的性质,熟练掌握相关性质并正确找出旋转角是解题关键8(2021山东聊城市中考真题)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(1,0),将ABO绕点O按顺时针旋转得到A1B1O,若ABOB1,则点A1的坐标为( )A()B()C()D
7、()【答案】A【分析】先求出AB,OA1,再作辅助线构造相似三角形,如图所示,得到对应边成比例,求出OC和A1C,即可求解【详解】解:如图所示,点A,B的坐标分别为A(0,2),B(1,0),OB=1,OA=2,AOB=90,A1OB1=90,O A1OB1,又ABOB1,O A1AB,1=2,过A1点作A1Cx轴,A1CO=AOB,O A1=OA=2,故选:A【点睛】本题综合考查了勾股定理、旋转的性质、相似三角形的判定和性质等内容,解决本题的关键是理解并掌握相关概念,能通过作辅助线构造相似三角形等,本题蕴含了数形结合的思想方法等9(2021河南中考真题)如图,的顶点,点在轴的正半轴上,延长交
8、轴于点将绕点顺时针旋转得到,当点的对应点落在上时,的延长线恰好经过点,则点的坐标为( )ABCD【答案】B【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,即得点的坐标【详解】如图,连接,因为轴,绕点顺时针旋转得到,所以,,故答案为B【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,找到是解题的关键10(2021黑龙江大庆市中考真题)如图,是线段上除端点外的一点,将绕正方形的顶点顺时针旋转,得到连接交于点下列结论正确的是( )ABCD【答案】D【分析】根据旋转的性质可以得到EAF是等腰直角三角形,然后根据相似三角形的判定和性质,以及平行线分线段成比例定理即可作
9、出判断【详解】解:根据旋转的性质知:EAF=90,故A选项错误;根据旋转的性质知:EAF=90,EA=AF,则EAF是等腰直角三角形,EF=AE,即AE:EF=1:,故B选项错误;若C选项正确,则,即,AEF=HEA=45,EAFEHA,EAHEFA,而EFA=45,EAH45,EAHEFA,假设不成立,故C选项错误;四边形ABCD是正方形,CDAB,即BHCF,AD=BC,EB:BC=EH:HF,即EB:AD=EH:HF,故D选项正确;故选:D【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,平行线分线段成比例定理,正确运用反证法是解题的关键11(2021湖北黄石市中考真题
10、)如图,的三个顶点都在方格纸的格点上,其中点的坐标是,现将绕点按逆时针方向旋转,则旋转后点的坐标是( )ABCD【答案】B【分析】在网格中绘制出CA旋转后的图形,得到点C旋转后对应点【详解】如图,绘制出CA绕点A逆时针旋转90的图形,由图可得:点C对应点的坐标为(-2,3) 故选B【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转12(2021山东泰安市中考真题)如图,在矩形中,点P在线段上运动(含B、C两点),连接,以点A为中心,将线段逆时针旋转60到,连接,则线段的最小值为( )ABCD3【答案】A【分析】根据题中条件确定出点的轨迹是线段,则线段的最小值就转化为定点到点的轨迹
11、线段的距离问题【详解】解:与固定夹角是,点的轨迹是线段,的轨迹也是一条线段 两点确定一条直线,取点分别与重合时,所对应两个点Q,来确定点的轨迹,得到如下标注信息后的图形:求的最小值,转化为点到点的轨迹线段的距离问题,,在中,,,将逆时针绕点转动后得到,为等边三角形,,为的中点,根据三线合一知,,过点作的垂线交于点,在中,对应的边等于斜边的一半,的最小值为,故选:A【点睛】本题考查了动点问题中,两点间距离的最小值问题,解题的关键是:需要确定动点的轨迹,才能方便找到解决问题的突破口13(2021山东东营市中考真题)如图,是边长为1的等边三角形,D、E为线段AC上两动点,且,过点D、E分别作AB、B
12、C的平行线相交于点F,分别交BC、AB于点H、G现有以下结论:;当点D与点C重合时,;当时,四边形BHFG为菱形,其中正确结论为( )ABCD【答案】B【分析】过A作AIBC垂足为I,然后计算ABC的面积即可判定;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定;如图将BCD绕B点逆时针旋转60得到ABN,求证NE=DE;再延长EA到P使AP=CD=AN,证得P=60,NP=AP=CD,然后讨论即可判定;如图1,当AE=CD时,根据题意求得CH=CD、AG=CH,再证明四边形BHFG为平行四边形,最后再说明是否为菱形【详解】解:如图1, 过A作AIBC垂足为I是边长为1的等边三角
13、形BAC=ABC=C=60,CI= AI=SABC=,故正确;如图2,当D与C重合时DBE=30,是等边三角形DBE=ABE=30DE=AE=GE/BD BG=GF/BD,BG/DFHF=BG=,故正确;如图3,将BCD绕B点逆时针旋转60得到ABN1=2,5=6=60,AN=CD,BD=BN3=302+4=1+4=30NBE=3=30又BD=BN,BE=BENBEDBE(SAS)NE=DE延长EA到P使AP=CD=ANNAP=180-60-60=60ANP为等边三角形P=60,NP=AP=CD如果AE+CD=DE成立,则PE=NE,需NEP=90,但NEP不一定为90,故不成立;如图1,当A
14、E=CD时,GE/BCAGE=ABC=60,GEA=C=60AGE=AEG=60,AG=AE同理:CH=CDAG=CHBG/FH,GF/BH四边形BHFG是平行四边形BG=BH四边形BHFG为菱形,故正确故选B【点睛】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识成为解答本题的关键二、填空题14(2021贵州铜仁市中考真题)如图,将边长为1的正方形绕点顺时针旋转到的位置,则阴影部分的面积是_;【答案】【分析】交于点,连接;根据全等三角形性质,通过证明,得;结合旋转的性质,得;根据三角函数的性质计算,得,结合正方形和三角形面积关系计算,即
15、可得到答案【详解】解:如图,交于点,连接 根据题意,得:, 正方形绕点顺时针旋转到, 阴影部分的面积故答案为:【点睛】本题考查了正方形、全等三角形、旋转、三角函数的知识;解题的关键是熟练掌握正方形、全等三角形、旋转、三角函数的性质,从而完成求解15(2021湖北鄂州市中考真题)如图,在平面直角坐标系中,点的坐标为,点的坐标为,将点绕点顺时针旋转得到点,则点的坐标为_【答案】【分析】根据题意画出图形,易证明,求出OE、BE的长即可求出B的坐标【详解】解:如图所示,点绕点顺时针旋转得到点,过点A作x轴垂线,垂足为D,过点B作x轴垂线,垂足为E,点的坐标为,点的坐标为,CD=2,AD=3,根据旋转的
16、性质,AC=BC,AD=CE=3,CD=BE=2,OE=2,BE=2,故答案为:【点睛】本题主要考查旋转变换和三角形全等的判定与性质,证明是解题关键16(2021湖南中考真题)如图,中,将绕A点顺时针方向旋转角得到,连接,则与的面积之比等于_【答案】【分析】先根据正切三角函数的定义可得,再根据旋转的性质可得,从而可得,然后根据相似三角形的判定可得,最后根据相似三角形的性质即可得【详解】解:在中,由旋转的性质得:,在和中,即与的面积之比等于,故答案为:【点睛】本题考查了正切三角函数、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键17(2021江苏苏州市中考真题)如图
17、,射线、互相垂直,点位于射线的上方,且在线段的垂直平分线上,连接,将线段绕点按逆时针方向旋转得到对应线段,若点恰好落在射线上,则点到射线的距离_【答案】【分析】添加辅助线,连接,过点作交ON与点P根据旋转的性质,得到,在和中,根据三角函数和已知线段的长度求出点到射线的距离【详解】如图所示,连接,过点作交ON与点P线段绕点按逆时针方向旋转得到对应线段,即点在线段的垂直平分线上, 【点睛】本题主要考查旋转的性质和三角函数对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等18(2021广西玉林市中考真题)如图、在正六边形中,连接线,与交于点,与交于点为,与交
18、于点,分别延长,于点,设有以下结论:;的重心、内心及外心均是点;四边形绕点逆时针旋转与四边形重合则所有正确结论的序号是_【答案】【分析】由题意易得,则有,进而可得,则有四边形是矩形,然后可得,为等边三角形,最后可得答案【详解】解:六边形是正六边形,在DEF中,同理可得,四边形是矩形,同理可证四边形是矩形,四边形是平行四边形,(ASA),四边形是菱形,NAM=60,NAM是等边三角形,AM=MN,AB=3,MAB=30,ACG=90,G=60,ADG是等边三角形,AC与BD交于点M,由等边三角形的性质及重心、内心、外心可得:的重心、内心及外心均是点,连接OF,如图所示:易得FOA=60,四边形绕
19、点逆时针旋转与四边形重合,综上所述:正确结论的序号是;故答案为【点睛】本题主要考查正多边形的性质、矩形及菱形的判定与性质、等边三角形的性质与判定、三角形的重心、内心、外心及三角函数,熟练掌握正多边形的性质、矩形及菱形的判定与性质、等边三角形的性质与判定、三角形的重心、内心、外心及三角函数是解题的关键19(2021上海中考真题)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为_【答案】【分析】先确定正方形的中心O与各边的所有点的连线中的最大值与最小值,然
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题21 图形的旋转共50题-解析版 专题 21 图形 旋转 50 解析
限制150内