蜂窝式脱硝催化剂再生技术研究进展.doc
《蜂窝式脱硝催化剂再生技术研究进展.doc》由会员分享,可在线阅读,更多相关《蜂窝式脱硝催化剂再生技术研究进展.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、蜂窝式脱硝催化剂再生技术研究进展摘要:煤燃烧会产生大量的氮氧化物(NOx)等大气污染物,随着燃煤污染防治要求越来越严格,脱硝催化剂得到了广泛应用,每年会产生大量的失活脱硝催化剂,催化剂的再生技术开发引起了人们的高度重视。简介了脱硝催化剂的应用情况,分析了蜂窝式脱硝催化剂失活的原因,综述了蜂窝式脱硝催化剂再生技术研究进展,并对今后蜂窝式脱硝催化剂再生技术进行了展望。关键词:蜂窝式脱硝催化剂;失活;再生技术;脱硝主要发生在燃煤行业,煤燃烧会产生大量的空气污染物,如细颗粒物、SO2、氮氧化物 (NOx)等,其中NOx通常采用脱硝催化剂加以脱除。据统计,2019年我国能源消费总量约48.6亿t标准煤,
2、其中电力行业耗煤23.7亿t, 冶金、建材、化工等重点非电力行业耗煤约占一半。当前燃煤发电是我国电力生产的主要方式之一。我国高度重视燃煤电厂超低排放问题,燃煤电厂NOx的排放限值为50mgm-3。2017年1月,环境保护部出台了火电厂污染防治技术政策,规范了燃煤污染防治方案。2017年年底,国家标准化管理委员会发布了烟气脱硝催化剂再生技术规范,进一步推动了我国脱硝催化剂再生技术与燃煤行业的发展。截至2019年年底,全国火电装机容量11.9055亿kW, 86%的煤电机组已实现超低排放,我国建成了世界上最大规模的超低排放清洁煤电供应体系。非电燃煤行业如钢铁、水泥、冶金、焦化、煤化工、工业锅炉和工
3、业窑炉等是除电力行业外,煤炭消耗量最大的领域,但其排放标准和治理水平要远低于燃煤电厂行业,NOx排放量占全国3/4以上。随着技术的更新和工业锅炉、水泥生产端管控措施的普及,NOx排放量在2011年逐渐停止攀升, 2017年以后,国家和地方政府先后提高了非电力行业的NOx排放标准,并加强了排放管理。2019年,我国钢铁行业的粗钢产量达到9.96亿t, 已完成超低排放改造的产能达总产能的62.6%。据统计,2019年钢铁行业拟建、新建的超低排放项目中,脱硝项目达47个,其中选择性催化还原法(SCR)脱硝项目27个,占比约为60%。由此可见,SCR脱硝技术正在非电燃煤行业中逐步推广。目前国内外烟气脱
4、硝的方法有SCR、非选择性催化还原法(NSCR)、选择性非催化还原法(SNCR)、催化氧化法、电子束法(EBA)、吸附法和微生物法等。SCR技术最早于1975年应用于日本的Shimoneski电厂,并扩展到欧洲、美国等发达国家和一些发展中国家。该方法具有空气净化率高(90%)、反应温度低(300400 )、处理设备紧凑、运行可靠等特点,被认为是最佳的固定源脱硝技术。脱硝催化剂又以蜂窝式脱硝催化剂应用最为广泛。蜂窝式脱硝催化剂受使用寿命的影响,一般35年就要更换,预计未来我国每年将产生15万m3的废弃脱硝催化剂。废弃脱硝催化剂既是一种污染物(含钒、钨等重金属有害成分),也是一种资源,通过再生处理
5、可以重复使用。再生技术一方面关系到失活脱硝催化剂的再生质量,另一方面关系到再生效益。脱硝催化剂再生技术的工业化应用尚未见文献报道。因此,作者对蜂窝式脱硝催化剂的应用与失活以及蜂窝式脱硝催化剂再生技术的研究进展进行综述,以期对脱硝催化剂的发展提供帮助。1 蜂窝式脱硝催化剂的应用与失活1.1 脱硝催化剂的应用情况SCR技术是在金属催化剂作用下,还原剂(NH3、尿素)选择性地与NOx反应生成N2和H2O,而不是被O2氧化。以NH3为还原剂的SCR技术因其优良的脱硝性能而得到广泛应用,催化剂作为SCR系统的核心,需要具有较高的脱硝效率、较宽的反应温度窗口、较强的耐硫性。常用的脱硝催化剂为V2O5-WO
6、3(MoO3)/TiO2系列(TiO2为主要载体,V2O5为主要活性成分,WO3或MoO3为助剂)。V2O5-WO3/TiO2催化剂在300400 具有良好的脱硝性能,是目前商用脱硝催化剂的主流。脱硝催化剂可分为三种类型:板式、蜂窝式和波纹板式。由于脱硝催化剂在使用过程中存在失活现象,板式和波纹板式脱硝催化剂再生较困难,因此很难得到广泛应用。蜂窝式脱硝催化剂是将催化剂组分混合均匀,通过挤出设备制成截面为150 mm 150 mm、长度不等的催化剂元件,然后组装成标准模块。蜂窝式脱硝催化剂由于其强耐久性、高耐腐性、高可靠性、高重复利用率、低压降以及可再生等特性,得到广泛应用。目前商用脱硝催化剂存
7、在脱硝温度较高、脱硝效率低等问题,改进催化剂结构和强化低温NH3-SCR的脱硝性能是脱硝催化剂的研究方向。边雪等采用共沉淀法得到xCeO2-yWO3/TiO2脱硝催化剂,在配比CeW=304时,脱硝效率可提高到90%95%。Hu等用浸渍法制备了Co-Mn/TiO2脱硝催化剂,在Co与Ti的原子比为0.05时,催化剂反应温度窗口降低到80180 ,催化剂的脱硝效率达到94.05%。这是由于,反应过程中生成了Mn3O4、Mn2O3等氧化物,导致催化剂还原温度降低,且提高了对NH3的吸附能力,因此,脱硝效率升高。高艳春等提出利用煤的气化渣(CGS)作为载体,采用等体积浸渍法制备V/CGS低温NH3-
8、SCR脱硝催化剂,其在250 下预氧化后于500 下煅烧,脱硝效率高达98%。该催化剂的优势体现在,五价钒和二氧化硫的存在能提高催化剂的性能,但CGS中的Ca、Si等杂质影响催化剂的活性,极易导致催化剂失活。Liu等制备了一种比表面积大的TiO2载体,其BET比表面积为380.5 m2g-1,采用特殊的热处理工艺进一步增大活性组分钒的比表面积,反应温度窗口宽,比传统的宽100 ,对NO的转化率为84%。1.2 蜂窝式脱硝催化剂的失活造成钒钛脱硝催化剂失活的原因主要有:物理覆盖、化学中毒(碱金属、碱土金属、砷、磷等)、烧结、磨损、活性成分流失等。物理覆盖发生在粉煤灰通过脱硝催化剂床层时,细小的粉
9、煤灰颗粒进入脱硝催化剂床层,覆盖在催化剂表面或进入孔道形成堵塞,造成脱硝催化剂部分活性位被覆盖而失活。这种催化剂失活是短暂的,通过高压水清洗,催化剂活性是可以恢复的。由于高温气体在通过脱硝催化剂床层时,截面中心与边缘存在的压差导致粉煤灰颗粒最先沉积在截面中心的催化剂外表面与孔道内表面,使得催化剂的截面中心因颗粒物理覆盖而失活得相对严重。内表面覆盖主要是由于较小颗粒的粉煤灰直接进入催化剂孔内造成堵塞,外表面覆盖是由于粉煤灰颗粒进入催化剂床层时吸附在表面形成的。化学中毒分为碱金属(如K、Na)中毒、碱土金属中毒(Ca、Mg)、非金属(P、Si、As)中毒等。碱金属中毒是因为钾离子和钠离子均能与催化
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蜂窝 式脱硝 催化剂 再生 技术研究 进展
限制150内