参数估计习题课.doc
《参数估计习题课.doc》由会员分享,可在线阅读,更多相关《参数估计习题课.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 .第21讲 参数估计习题课教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性; 3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。教学难点:矩估计,最大似然估计,正态总体参数的区间估计。教学时数:2学时。教学过程:一、知识要点回顾1. 矩估计 用各阶样本原点矩 作为各阶总体原点矩的估计,。若有参数,则参数的矩估计为。2. 最大似然估计似然函数,取对数,从=0中解得的最大似然估计。3. 无偏性,有效性当时,称为的无偏估计
2、。 当时,称估计量比有效。二 、典型例题解析1设,求的矩估计。解 设则=故,所以。2. 设总体在上服从均匀分布,求a和b的矩估计。解 由均匀分布的数学期望和方差知 (1) (2)由(1)解得,代入(2)得, 整理得,解得故得的矩估计为其中。3设总体的密度函数为,求的最大似然估计。解 设,则4 设总体的密度函数已知),求参数的最大似然估计。解 解得 。5. 设和为参数的两个独立的无偏估计量,且假定,求常数和,使为的无偏估计,并使方差最小。解 由于,且知,故得c+d=1。又由于并使其最小,即使,满足条件c+d=1的最小值。令d=1-c,代入得,解得。7. 设某电子元件的寿命服从正态分布,抽样检查1
3、0个元件,得样本均值,样本标准差。求 (1) 总体均值置信水平为的置信区间; (2) 用作为的估计值,求绝对误差值不大于10(h)的概率。解 (1)由于未知,s=14(h),根据求置信区间的公式得 查表得,故总体均值置信水平为的置信区间为 (2) 1-0.05=0.958. 设为正态总体的一个样本,确定常数的值,使为的无偏估计。解 由于,所以有 由(无偏性),故有,所以。二、计算题窗体顶端1.某工厂生产滚珠.从某日生产的产品中随机抽取9个,测得直径(单位:mm)如下: 14.6 14.7 15.1 14.9 15.0 14.8 15.1 15.2 14.8用矩估计法估计该日生产的滚珠的平均直径
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 参数估计 习题
限制150内