电气类英文翻译-电力系统的演化(7页).doc
《电气类英文翻译-电力系统的演化(7页).doc》由会员分享,可在线阅读,更多相关《电气类英文翻译-电力系统的演化(7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-电气类英文翻译-电力系统的演化-第 7 页EVOLUTION OF ELECTRIC POWER SYSTEMS The commercial use of electricity began in the late1870s when arc lamps were used for lighthouse illumination and street lighting. The first complete electric power system (comprising a generator, cable, fuse, meter, and loads)was built by Th
2、omas Edison-the historic Pearl Street Station in New York City which began operation in September 1882.This was a dc system consisting of a steam-engine-driven dc generator supplying power to 59 customers within an area roughly 1.5km in radios. The load, which consisted entirely of incandescent lamp
3、s, was supplied at 110 V through an underground cable system. Within a few years similar systems were in operation in most large cities throughout the world. With the development of motors by Frank Sprague in 1884, motor loads were added to such systems. This was the beginning of what would develop
4、into one of the largest industries in the world. In spite of the initial widespread use of dc systems, they were almost completely superseded by ac systems. By 1886, the limitations of dc systems were becoming increasingly apparent .They could deliver power only a short distance from the generators.
5、 To keep transmission power losers (RI2) and voltage drops to acceptable levels, voltage levels had to be high for long-distance power transmission. Such high voltages were not acceptable for generation and consumption of power; therefore, a convenient means for voltage transformation became a neces
6、sity. The development of the transformation and ac transmission by L. Gaulard and J.D. Gibbs of Paris, France, led to ac electric power systems. George Westinghouse secured rights to these developments in the United States. In 1886, William Stanley, an associate of Westinghouse, developed and tested
7、 a commercially practical transformer and ac distribution system for 150 lamps at Great Barrington, Massachusetts. In 1889, the first ac transmission line in North America was put into operation in Oregon between Willamette Falls and Portland. It was a single-phase line transmitting power at 4,000 V
8、 over a distance of 21 km. With the development of polyphase systems by Nikolas Tesla, the ac system became even more attractive. By 1888, Tesla held several patents on ac motors, generators, transformers, and transmission systems. Westinghouse bought the patents to these early inventions, and they
9、formed the basis of the present-day ac systems. In the 1890s, there was considerable controversy over whether the electric utility industry should be standardized on dc or ac. There were passionate arguments between Edison, who advocated dc, and Westinghouse, who favored ac. By the turn of the centu
10、ry, the ac system had won out over the dc system for the following reasons;l Voltage levels can be easily transformed in ac systems, thus providing the flexibility for use of different voltages for generation, transmission, and consumption.l AC generators are much simpler than dc generators.l AC mot
11、ors are much simpler and cheaper than dc motors.The first three-phase line in North America went into operation in 1893-a 2,300 V, 12 km line in southern California. Around this time, ac was chosen at Niagara Falls because dc was not practical for transmitting power to Buffalo, about 30 km away. Thi
12、s decision ended the ac versus dc controversy and established victory for the ac system. In the early period of ac power transmission, frequency was not standardized. Many different frequencies were in use: 25, 50, 60, 125, and 133 Hz. This posed a problem for interconnection. Eventually 60 Hz was a
13、dopted as standard in North America, although many other countries use 50 Hz. The increasing need for transmitting larger amounts of power over longer distances created an incentive to use progressively higher voltage levels. The early ac systems used 12,44, and 60 kV(RMS line-to-line).This rose to
14、165 kV in 1922,220 kV in 1923,287 kV in 1935,330 kV in 1953,and 765 kV was introduced in the United States in 1969. To avoid the proliferation of an unlimited number of voltages, the industry has standardized voltage levels. The standards are 115, 138, 161, and 230 kV for the high voltage (HV) class
15、, and 345, 500 and 765 kV for the extra-high voltage (EHV) class. With the development of mercury arc valves in the early 1950s, high voltage dc (HVDC) transmission systems became economical in special situations. The HVDC transmission is attractive for transmission of large blocks of power over lon
16、g distances. The cross-over point beyond which dc transmission may become a competitive to ac transmission is around 500 kV for around 500 km for overhead lines and 50 km for underground or submarine cables. HDVC transmission also provides an asynchronous link between systems where ac interconnectio
17、n would be impractical because of system stability considerations or because nominal frequencies of the systems are different. The first modern commercial application of HVDC transmission occurred in 1954 when the Swedish mainland and the island of Gotland were interconnected by a 96 km submarine ca
18、ble. With the advent of thyristor valve converters, HVDC transmission became even more attractive. The first application of an HVDC system using thyristor values was at Eel River in 1972-a back-to-back scheme providing an asynchronous tie between the power systems of Quebec and New Brunswick. With t
19、he cost and size of conversion equipment decreasing and its reliability increasing, there has been a steady increase in the use of HVDC transmission.Interconnection of neighboring utilities usually leads to improved security results from the mutual emergency assistance that the utilities can provide
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电气 英文翻译 电力系统 演化
限制150内