小学生4年级数学手抄报内容资料参考.doc
《小学生4年级数学手抄报内容资料参考.doc》由会员分享,可在线阅读,更多相关《小学生4年级数学手抄报内容资料参考.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小学生4年级数学手抄报内容资料 篇一:四年级数学手抄报内容 阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做阿拉伯数字,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。 现在,阿拉伯数字已成了全世界通用的数字符 九九歌 九九歌就是我们现在使用的乘法口诀。 远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九
2、九歌是从九九八十一起到二二如四止,共36句。因为是从九九八十一开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到一一如一。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从一一如一起到九九八十一止。 现在我国使用的乘法口诀有两种,一种是45句的,通常称为小九九;还有一种是81句的,通常称为大九九。 数学符号的起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。 例如加号曾经有好几种,现在通用+号。 +号是由拉丁文et(和的意思)
3、演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文pi(加的意思)的第一个字母表示加,草为最后都变成了+号。 -号是从拉丁文minus(减的意思)演变来的,简写m,再省略掉字母,就成了-了。 到了十五世纪,德国数学家魏德美正式确定:+用作加号,-用作减号。乘号曾经用过十几种,现在通用两种。一个是,最早是英国数学家奥屈特1631年提出的;一个是 ,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:号象拉丁字母X,加以反对,而赞成用 号。他自己还提出用表示相乘。可是这个符号现在应用到集合论中去了。 到了十八世纪,美国数学家欧德莱确定,把作为乘号。他认为是+斜起来写,是另一种表示增加的符号。
4、 最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用:表示除或比,另外有人用-(除线)表示除。后来瑞士数学家拉哈在他所著的代数学里,才根据群众创造,正式将作为除号。 十六世纪法国数学家维叶特用=表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号=就从1540年开始使用起来。 1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了=号,他还在几何学中用表示相似,用表示全等。 大于号和小于号,是1631年英国著名代数学家赫锐奥特创用。至于、这三个符号的出现,
5、是很晚很晚的事了。大括号 和中括号 是代数创始人之一魏治德创造的。 奇妙的圆形 圆形,是一个看来简单,实际上是很奇妙的圆形。 古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。 以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。 当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。 古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。 大约在6000年前,美索不达米亚人,做出了世界上第一个轮子-圆的木盘。大约在4000多年前,人们
6、将圆的木盘固定在木架下,这就成了最初的车子。会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。 圆周率,也就是圆周与直径的比值,是一个非常奇特的数。 周髀算经上说径一周三,把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。 魏晋时期的刘徽于公元263年给九章算术作注。他发现径一周三只是圆内接正六边形周长和直径的比值。
7、他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。 祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在 3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。 现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。从一加到一百
8、 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:把 1到 100的整数写下来,然後把它们加起来!每当有时他们有如下的习惯:第一个做完的就把石板当时通行,写字用面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:答案在这儿!其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分
9、都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1100101,299101,398101,4952101,5051101,一共有50对和为 101的数目,所以答案是 501015050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 勾股定理 勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。 这个定理在中国又称为商高定理,在外国称为毕达哥拉斯定理。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。
10、当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:故折矩,勾广三,股修四,经隅 五。什么是勾、股呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为勾,下半部分称为股。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成勾三股四弦五。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作商高定理。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元
11、前三百年左右的人)在编著几何原本时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为毕达哥拉斯定理,以后就流传开了。 关于勾股定理的发现,周髀算经上说:故禹之所以治天下者,此数之所由生也。此数指的是勾三股四弦五,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。 勾股定理的应用非常广泛。我国战国时期另一部古籍路史后记十二注中就有这样的记载:禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的
12、结果。 无声胜有声 在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方1,另一个是193707721761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢? 因为科乐解决了两百年来一直没弄清的问题,即2是67次方1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方1不是质数,而是合数。 科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学生 年级 数学 手抄 内容 资料 参考
限制150内