【初中数学解题技法】圆中最定值(修订版).docx
《【初中数学解题技法】圆中最定值(修订版).docx》由会员分享,可在线阅读,更多相关《【初中数学解题技法】圆中最定值(修订版).docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆中最定值类型一、圆中将军饮马例1、如图,AB是O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP,则MP+NP的最小值是_1、已知圆O的面积为3,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点,则PC+CD的最小值为_2、如图,菱形ABC中,A=60度,AB=3, 圆A、圆B的半径为2和1,P、E、F分别是CD,圆A和圆B上的动点,则PE+PF的最小值为_ 类型二、折叠隐圆【基本原理】(一箭穿心)点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1、P2,则AP的最小值为AP2,最大值为A
2、 P1例、如图4,在边长为2的菱形ABCD中,A=60,M是AD边的中点,N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,请求出AB长度的最小值1、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB的最小值为_2、四边形ABCD中,ADBC,A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将ABP沿BP所在直线翻折得到QBP,则CQD的面积最小值为_类型三、 随动位似隐圆例、在RtABC中,ACB=90,BAC=30,BC=6点D是边AC上一
3、点D且AD=23,将线段AD绕点A旋转得线段AD,点F始终为BD的中点,则将线段CF最大值为_分析:易知D轨迹为以A为圆心AD为半径的圆,则在运动过程中AD为定值23,故取AB中点G,则FG为中位线,FG=1/2 AD=3,故F点轨迹为以G为圆心,3为半径的圆。问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。思路2:倍长BC到B,则CF为BDB的中位线,CF=1/2 BD,当BD最大时,CF也取最大值,问题实质为D在圆A上运动至何处时,BD取最大。 【方法归纳】、如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点点M运动轨迹为圆O2,且O2为AO1中点。、构造中
4、位线1、如图,在RtABC中,ACB = 90,D是AC的中点,M是BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M是BD的中点),若AC = 4,BC = 3,那么在旋转过程中,线段CM长度的取值范围是_ 2、如图,ABC是边长为2的等边三角形,以AC为直径作半圆,P为半圆上任意一点,M为BP中点,则在点P由A到C运动过程中,点M运动路径长为_类型四、定性分析垂线段最短例、如图,半圆O的半径为1,ACAB,BDAB,且AC=1,BD=3,P是半圆上任意一点,则封闭图形ABDPC面积的最大值是_【分析】:思路1、连接CD、梯形ABCD面积为定值,要使封闭图形ABDPC面积取最大值,
5、则使CPD面积取最小即可,CPD中,底边CD为定值,则当高取最小值时,面积有最小值,故问题变成当点P在圆上运动至何处时,点P到CD距离最小。C、D、O为定点,则点O到CD距离为定值,计算CD、OC、OD长,由勾逆知OCCD,设点P到CD距离为h,则h+rOC,hOC-r,即当O、P、M三点共线时,h有最小值,此时M与点C重合,故OC与圆O交点即为所求点P。思路2:P点的确定也可以这样想,平移CD,设平移后的直线为m,则直线m与CD间的距离即为CD边上的高,显然,当直线m与圆O相切时,高h有最小值。 1、如图,P为圆O内一个定点,A为圆O上一个动点,射线AP,AO分别与圆O交于B,C两点,若圆O
6、的半径为3,OP=3 ,则弦BC的最大值为_2、如图,AB为O的直径,C为半圆的中点,C的半径为2,AB=8,点P是直径AB上的一动点,PM与C切于点M,则PM的取值范围为_ 类型五、定弦定角【基本原理】如图1O中,A、B为定点,则AB为定弦,点C为优弧上任一点,在C点运动过程中则ACB的度数不变逆运用如图2、点A、B为定点,点C为线段AB外一点,且ACB=(为固定值)点C在以AB为弦的圆上运动(不与A、B重合) 图1 图2例、如图,AB为定长,点C为线段AB外一点,且满足ACB=60度,请在图中画出点C的运动轨迹,简要说明作图步骤步骤1、_步骤2、_练习、1、如图,AB为定长,点C为线段AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新中考数学资料 初中数学讲义 新教材数学专题 初中数学课件 初中数学学案 初中数学精品资料 初中数学专题 初中数学试卷 中考数学解题指导
限制150内