届高三数学一轮复习平面解析几何练习题6[精选].doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《届高三数学一轮复习平面解析几何练习题6[精选].doc》由会员分享,可在线阅读,更多相关《届高三数学一轮复习平面解析几何练习题6[精选].doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第8章 第6节一、选择题1(2010湖北黄冈)若抛物线y22px的焦点与椭圆1的右焦点重合,则p的值为()A2 B2 C4 D4答案D解析椭圆中,a26,b22,c2,右焦点(2,0),由题意知2,p4.2已知点M是抛物线y22px(p0)上的一点,F为抛物线的焦点,若以|MF|为直径作圆,则这个圆与y轴的关系是()A相交 B相切C相离 D以上三种情形都有可能答案B解析如图,由MF的中点A作准线l的垂线AE,交直线l于点E,交y轴于点B;由点M作准线l的垂线MD,垂足为D,交y轴于点C,则MDMF,ONOF,AB,这个圆与y轴相切3(2010山东文)已知抛物线y22px(p0),过焦点且斜率为
2、1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()Ax1 Bx1 Cx2 Dx2答案B解析设A(x1,y1),B(x2,y2),则线段AB的中点(,),2,A、B在抛物线y22px上,得y12y222p(x1x2),kAB,kAB1,p2抛物线方程为y24x,准线方程为:x1,故选B.4双曲线1的渐近线上一点A到双曲线的右焦点F的距离等于2,抛物线y22px(p0)过点A,则该抛物线的方程为()Ay29x By24xCy2x Dy2x答案C解析双曲线1的渐近线方程为yx,F点坐标为(,0),设A点坐标为(x,y),则yx,由|AF|22x,y,代入y22px
3、得p,所以抛物线方程为y2x,所以选C.5已知点P是抛物线y22x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为()A. B3 C. D.答案A解析记抛物线y22x的焦点为F,准线是l,由抛物线的定义知点P到焦点F的距离等于它到准线l的距离,因此要求点P到点(0,2)的距离与点P到抛物线的准线的距离之和的最小值,可以转化为求点P到点(0,2)的距离与点P到焦点F的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F与点(0,2)的距离,因此所求的最小值等于,选A.6已知抛物线C:y24x的焦点为F,准线为l,过抛物线C上的点A作准线l的垂线,垂足为M,若
4、AMF与AOF(其中O为坐标原点)的面积之比为31,则点A的坐标为()A(2,2) B(2,2)C(2,) D(2,2)答案D解析如图,由题意可得,|OF|1,由抛物线定义得,|AF|AM|,AMF与AOF(其中O为坐标原点)的面积之比为31,3,|AM|3,设A,13,解得y02,2,点A的坐标是(2,2),故选D.7(2010河北许昌调研)过点P(3,1)且方向向量为a(2,5)的光线经直线y2反射后通过抛物线y2mx,(m0)的焦点,则抛物线的方程为()Ay22x By2xCy24x Dy24x答案D解析设过P(3,1),方向向量为a(2,5)的直线上任一点Q(x,y),则a,5x2y1
5、30,此直线关于直线y2对称的直线方程为5x2(4y)130,即5x2y50,此直线过抛物线y2mx的焦点F,m4,故选D.8已知mn0,则方程是mx2ny21与mxny20在同一坐标系内的图形可能是()答案A解析若mn0,则mx2ny21应为椭圆,y2x应开口向左,故排除C、D;mn0,此时抛物线y2x应开口向右,排除B,选A.9(2010山东聊城模考)已知A、B为抛物线C:y24x上的不同两点,F为抛物线C的焦点,若4,则直线AB的斜率为()A BC D答案D解析4,|4|,设|BF|t,则|AF|4t,|BM|AA1|BB1|AF|BF|3t,又|AB|AF|BF|5t,|AM|4t,t
6、anABM,由对称性可知,这样的直线AB有两条,其斜率为.10已知抛物线C的方程为x2y,过点A(0,4)和点B(t,0)的直线与抛物线C没有公共点,则实数t的取值范围是()A(,1)(1,)B.C(,2)(2,)D(,2)(,)答案B解析由题意知方程组无实数解由得y4,代入整理得,2x240,32或t,故选B.点评可用数形结合法求解,设过点A(0,4)与抛物线x2y相切的直线与抛物线切点为M(x0,y0),则切线方程为yy04x0(xx0),过A点,42x024x0(0x0),x0,y04,切线方程为y44x8,令y0得x,即t,由图形易知直线与抛物线无公共点时,t.二、填空题11已知点A(
7、2,0)、B(4,0),动点P在抛物线y24x上运动,则取得最小值时的点P的坐标是_答案(0,0)解析设P,则,y2y288,当且仅当y0时取等号,此时点P的坐标为(0,0)12(文)(2010泰安市模拟)如图,过抛物线y22px(p0)的焦点F作倾斜角为60的直线l,交抛物线于A、B两点,且|FA|3,则抛物线的方程是_答案y23x解析设抛物线准线为l,作AA1l,BB1l,FQl,垂足分别为A1、B1、Q,作BMAA1垂足为M,BM交FQ于N,则由条件易知ABM30,设|BF|t,则|NF|,|MA|,|AM|QN|,3p,p,抛物线方程为y23x.(理)(2010泰安质检)如图,过抛物线
8、y22px(p0)的焦点的直线l依次交抛物线及其准线于点A、B、C,若|BC|2|BF|,且|AF|3,则抛物线的方程是_答案y23x解析解法1:过A、B作准线垂线,垂足分别为A1,B1,则|AA1|3,|BB1|BF|,|BC|2|BF|,|BC|2|BB1|,|AC|2|AA1|2|AF|6,|CF|3,p|CF|,抛物线方程为y23x.解法2:由抛物线定义,|BF|等于B到准线的距离,由|BC|2|BF|得BCB130,又|AF|3,从而A在抛物线上,代入抛物线方程y22px,解得p.点评:还可以由|BC|2|BF|得出BCB130,从而求得A点的横坐标为|OF|AF|或3,3,p.13
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精选 届高三 数学 一轮 复习 平面 解析几何 练习题
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内