利用导数证明不等式的常见题型及解题技巧(6页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《利用导数证明不等式的常见题型及解题技巧(6页).doc》由会员分享,可在线阅读,更多相关《利用导数证明不等式的常见题型及解题技巧(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-利用导数证明不等式的常见题型及解题技巧-第 6 页利用导数证明不等式的常见题型及解题技巧趣题引入已知函数 设,证明:分析:主要考查利用导数证明不等式的能力。证明:,设 当时 ,当时 ,即在上为减函数,在上为增函数,又 ,即 设 当时,因此在区间上为减函数;因为,又 ,即 故综上可知,当 时,本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。技巧精髓一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。二、解题技巧
2、是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。1、利用题目所给函数证明 【例1】 已知函数,求证:当时,恒有分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数,从其导数入手即可证明。【绿色通道】 当时,即在上为增函数 当时,即在上为减函数故函数的单调递增区间为,单调递减区间于是函数在上的最大值为,因此,当时,即 (右面得证),现证左面,令, 当 ,即在上为减函数,在上为增函数,故函数在上的最小值为,当时,即,综上可知,当 【警示启迪】如果是函数在区间上的最大(小)值,则有(或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用 导数 证明 不等式 常见 题型 解题 技巧
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内