上科版 普通高中教科书 物理选择性必修3.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《上科版 普通高中教科书 物理选择性必修3.pdf》由会员分享,可在线阅读,更多相关《上科版 普通高中教科书 物理选择性必修3.pdf(146页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、普通高中教科书总主编束炳如何润伟上海科技教育出版社物 理选择性必修第 三 册2每章的开头都有一些情境,提出一些问题,让你明确本章研究的主要内容。亲爱的同学:欢迎你学习物理(选择性必修 3)!本书是高中物理选择性必修的最后一册教材。它涵盖了近代物理学的一些基本知识,在高中物理中处于特别重要的地位。我们将首次运用统计思想来研究大量分子做无规则运动的规律,从宏观和微观两个角度研究固体、液体和气体的性质,在量子论视野下探索原子世界的奥秘,认识光及实物粒子的波粒二象性。我们将通过一系列的实验探究活动,增强科学探究意识;并通过回顾热力学定律和能量守恒定律的发现历程和原子世界的探秘过程等,增强科学探究能力和
2、科学献身精神,树立可持续发展意识和社会参与意识,养成关心社会和对社会负责的态度。为了让你在学习物理(选择性必修 3)的过程中获得更大的成功,请浏览下面的栏目介绍。物质世界在不断地运动变化着。自然界发生的任何运动变化过程都遵循着一条最基本、最普遍的规律能量守恒定律。你知道人们是怎样发现能量守恒定律的吗?自然界的能量不会消失,那么它可以被人们反复利用吗?能量可以相互转化,那么燃料的内能是否可以全部用来做功呢?自然界宏观过程的方向性蕴含着怎样的物理原理?本章将以能量为主线,研究改变内能的方式与规律热力学第一定律,理解能量守恒定律及其应用;由自然界中宏观过程的方向性,了解热力学第二定律;回顾热力学第一
3、定律和能量守恒定律的发现过程,体会科学探索中的挫折和失败对科学发现的意义。第4章 热力学定律图 3-2-2观察表面张力现象用的金属框架abcd实验探究观察液体表面张力现象1.在杯子内装满水,试着把若干枚小硬币轻轻地平放在水面上。观察水面形状有什么变化?小硬币为什么不沉下去呢?2.用金属丝制成如图 3-2-2 所示各种形状的框架,分别把它们浸入肥皂液内,轻轻取出后观察框架上皂膜的形状。如图 3-2-3 a 所示,用针捅破金属圆环棉线上边的皂膜,棉线的形状有什么变化?如图 3-2-3 b 所示,为什么金属框上的皂膜把细金属丝向左拉?对图 3-2-3 c 和图 3-2-3 d 所形成的皂膜形状,你有
4、什么猜测?3.如图 3-2-4 所示,把橄榄油滴入水和酒精的混合液中,橄榄油滴呈什么形状?这些实验表明,液体的表面就像紧绷着的橡皮膜,它有着一种收缩的趋势。使液体表面具有收缩趋势的力叫做表面张力(surface tension)。那么,表面张力是怎样产生的呢?实验探究这里将要求你提出问题,设计实验方案,动手做一些有意义的实验,进行科学探究。3第 章 分子动理论1分析与论证这里你将进行分析、综合,并运用数学工具进行推理,得出物理学规律和公式。通过这一过程,你将体会科学思维的魅力。学生必做实验这里为你提供了完整的实验活动,让你通过动手实验,探索物理规律,学习物理方法,形成物理观念,提高解决问题的能
5、力,体验成功的喜悦。分子很小,无法通过普通的光学显微镜直接观察。为了研究分子的大小,首先要建立一个简化的分子模型。我们设想组成物质的分子都是球形的,而且同种物质的分子都是一个个大小相同的小球。如果能把某一部分物质的分子一个紧挨一个铺展开来,形成一张“单分子膜”,那么,只要知道这部分物质的体积 V 和铺展开来的面积 S,就可以估算出分子的直径及其大小。即分子直径 D=VS分子体积 V1=16 D3=16VS3学生必做实验学生必做实验用油膜法估测油酸分子的大小信息浏览、STSE这里为你提供了各种有趣、有用的资料,包括物理学史上的经典事例、科学家小故事等,它们反映了物理学与科学、技术、社会、环境的紧
6、密联系。你的视野将更开阔,你会更加热爱科学。分析与论证综合上面的研究可以知道,使热力学系统从一个状态变化到另一个状态,既可以通过做功也可以通过热传递的方式。实验表明,这两种方式的物理过程虽然不同,对于系统内能的改变却是等效的。系统内能的改变过程可用能流图(图 4-1-5)形象地表示。应该指出,“做功”和“热传递”虽有其等效的一面,但在物理本质上仍然存在着区别。“做功”(机械功)伴随着一定的宏观位移,它是系统外的有序运动的能量与系统内分子无规则运动能量之间的转化,从而改变系统的内能。“热传递”是通过分子之间的相互作用,是系统外的物质分子无规则运动的能量向系统内物质分子无规则运动能量之间完成的一种
7、转移,从而改变系统的内能。课题研究这里提供了一些课题供你选择研究,这种研究将使你的才智得到充分的展示。多学一点 如何理解分子之间既有引力又有斥力我们先来研究一下原子间的引力和斥力是如何产生的。原子中有一个直径约 10-15 m 的带正电的核,核外有带负电的电子组成的电子云。整个原子呈电中性。当两个原子相距较远时(图 1-3-6a),可以认为相互间没有静电力的作用。当两个原子接近到如图 1-3-6b 所示的情况时,它们有一部分电子云互相重叠。原子 1 的电子已不能把原子 1 的核的正图 1-3-6 分子间相互作用的微观解释a 两原子相距较远时c两 原子相当靠近时b 两原子接近时1212abc12
8、12abc1212abc多学一点这里将介绍更多更深的奥秘,以开阔你的视野。你如果有兴趣,可以作进一步的探索。肥皂水与清水的表面张力比较研究请你设计一个实验,比较肥皂水与清水的表面张力,并粗略地研究表面张力与哪些因素有关。做一下这个实验,并写出课题研究报告,在同学间相互交流评价。课题研究原子,请你排好队!借助光学显微镜,人们可以观察到细胞、细菌和其他微生物,其分辨本领可达 2 10-4 mm。尽管从技术上来说,提高光学显微镜的放大倍数并不困难,但不管放大倍数有多大,比 2 10-4 mm还小的物体,如大多数病毒,在光学显微镜下都不能被看清楚。要提高显微镜的分辨本领,必须改用波长比可见光短得多的射
9、线。电子的德布罗意波长很短,因此用电子束代替光束成为上佳选择。1931 年德国物理学家鲁斯卡(E.Ruska)发明了世界上第一台电子显微镜。1982 年,美国 IBM 公司的物理学家宾尼希和他的老师罗雷尔发明了世界上第一台扫描隧穿显微镜,它应用了电子的量子隧穿效应,能直接观测到单个原子的立体形貌。利用 STM,人类还实现了直接操纵和排布原子的奇迹(图 6-4-4)。信息浏览图 6-4-4 用扫描隧穿显微镜把碳原子排布在铜表面上的“原子”两字第1章 分子动理论 61.1走进分子世界 71.2无序中的有序 141.3分子动理论 内能 20第2章 气体定律与人类生活 252.1气体的状态 262.2
10、玻意耳定律 292.3查理定律和盖-吕萨克定律 34第3章 固体、液体与新材料 403.1固体的性质 413.2液体的表面性质 453.3液晶与显示器 513.4半导体材料和纳米材料 56第4章 热力学定律 644.1热力学第一定律 654.2能量守恒定律 704.3热力学第二定律 75目 录第5章 原子世界探秘 825.1电子的发现 835.2原子模型的提出 865.3量子论视野下的原子模型 89第6章 波粒二象性 966.1光电效应现象 976.2光电效应的理论解释 1006.3光的波粒二象性 1036.4实物粒子具有波动性 105第7章 原子核与核能 1107.1原子核结构探秘 1117
11、.2原子核的衰变 1157.3原子核的结合能 1227.4裂变与聚变 1267.5粒子物理与宇宙起源 134总结与评价 课题研究成果报告会140研究课题示例 140评价表 14161827 年,英国植物学家布朗(R.Brown)在研究一种花粉的繁殖过程时注意到,悬浮在水中的花粉颗粒会不停地毫无规则地跳动,就像“活的”一样。这种由植物学家发现的现象,却难倒了当时的许多物理学家。悬浮颗粒为什么会不停地做着这种杂乱无章的运动呢?这种运动是否就是人们猜测的分子运动的宏观表现?组成物质的分子究竟有多大?大量分子的运动有什么特点?物质分子的微观运动在宏观上有何表现?本章将采用宏观和微观相结合的方法,以统计
12、思想和能量观点为主线来研究分子的运动;通过实例和活动,了解分子动理论的基本观点及相关的实验证据;了解分子运动速率分布的统计规律;结合分子动理论阐释温度和气体压强的微观意义,研究由分子运动所决定的物质系统的内能。第1章 分子动理论7第 章 分子动理论1图 1-1-1 场离子显微镜(FIM)拍摄的图像显示了铂针顶端的原子(橘黄色)排列情况,这个图像放大了20 万倍1.1 走进分子世界我们知道,物体都是由许多很小的分子组成的。那么,分子有多大?怎样知道分子的大小呢?物质的分子有多少呢?它们的运动状态是怎样的?分子的大小实际分子有着复杂的内部结构,建立分子的球模型,仅是为了便于研究。图 1-1-2 用
13、扫描隧穿显微镜描绘的遗传分子(DNA)形状 分子很小,无法通过普通的光学显微镜直接观察。为了研究分子的大小,首先要建立一个简化的分子模型。我们设想组成物质的分子都是球形的,而且同种物质的分子都是一个个大小相同的小球。如果能把某一部分物质的分子一个紧挨一个铺展开来,形成一张“单分子膜”,那么,只要知道这部分物质的体积 V 和铺展开来的面积 S,就可以估算出分子的直径和体积的大小。即分子直径 D=VS分子体积 V1=16 D3=16VS3思考讨论1.怎样使某部分的物质分子一个紧挨一个地铺展开来呢?学生必做实验学生必做实验用油膜法估测油酸分子的大小用油膜法估测分子的大小,提供了一个测量微观量的思想和
14、方法。82.如何测量铺展后形成的不规则图形的面积?设计实验以油酸(C17 H33 COOH)为例,为了使分子排列起来,可以利用油酸分子的酸根COOH对水有很强的亲和力这一特点。把一滴用酒精稀释过的油酸溶液滴在水面上,油酸就在水面散开,形成一层薄薄的膜(酒精溶于水,并会很快挥发)。这层薄膜可以看成是单分子层,它的厚度可以认为等于油酸分子的直径(图 1-1-3)。实验操作 1.配制浓度为 0.1%的油酸酒精溶液。2.将配制好的油酸酒精溶液放在小量筒中,用滴管吸取1 cm3的溶液,数出均匀滴出时的总滴数 N,得 1 滴溶液的体积。根据配制的浓度,即得 1 滴溶液中油酸的体积V=1N 0.1%cm33
15、.在一个 30 cm 30 cm 的浅盘里倒入约 2 cm 深的水,将痱子粉或滑石粉均匀地撒在水面上。再用滴管吸取配制好的油酸酒精溶液,滴入一小滴到水面上,液滴很快会形成如图 1-1-4所示的油酸薄膜。图 1-1-3 油酸分子形成单分子层的示意图图 1-1-4 油酸薄膜形状实验序号油酸溶液体积油膜面积123设计本实验的思想方法是:如何将难以测量的微观量,转化为相对容易测量的宏观量。科学合理的实验操作是获取正确实验数据的关键,有助于减小实验中的误差。要正确地读出和记录实验数据,运用恰当的方法处理数据并得出正确结论。4.用玻璃板盖在浅盘上,在玻璃板上覆一张半透明的坐标纸,将油膜形状描画在坐标纸上。
16、收集证据油酸分子9第 章 分子动理论1实验结论通过计算可得油酸分子直径的测量值的数量级为 10-9 10-10 m,由此可见,分子是何其小!你的测量值是多少呢?请你写出完整、规范的实验报告,正确表达科学探究的过程和结果。研究表明,一般分子直径的数量级为 10-10 m。例如,水分子的直径约为 4 10-10 m,氢分子的直径约为 2.3 10-10 m。现在,用扫描隧穿显微镜已经可以看到原子尺度的微观世界(图 1-1-5)。1993 年 5 月,美 国 IBM 公司的科学家在 4 K 的温度下,用电子束将单层的铁原子蒸发到铜表面,然后用扫描隧穿显微镜针尖将 48 个铁原子排列成直径为14.3
17、nm 的圆形量子围栏。对于一个系统,从整体上对其状态加以描述的方法叫做宏观描述。这时表征系统状态和属性的物理量叫宏观量。通过微观粒子运动状态的说明,对系统的状态加以描述的方法叫做微观描述。描述微观粒子运动状态的物理量叫微观量。图 1-1-5 扫描隧穿显微镜观察到的圆形量子围栏扫描隧穿显微镜(scanning tunneling microscope,简称 STM)是在 1982 年由德国科学家宾尼希(G.Binnig)和瑞士科学家罗雷尔(H.Rohrer)首先研制成功的。为此,他俩与另一位科学家共同获得了 1986 年的诺贝尔物理学奖。1mol 物质的分子数分子很小,通常的一小块物体中都包含着
18、大量的分子。我们在化学中已学过,1 mol 任何物质所包含粒子的数目都相等,这个数目叫做阿伏伽德罗常量(Avogadro constant)。根据分子的球模型,可以算出阿伏伽德罗常量的大小,从而推算出一定量任何物质中所包含分子的数目。以水为例,水的摩尔体积是 Vmol=1.8 10-5 m3/mol,水分子的直径约为 D=4 10-10 m,由此得水分子的体积 V1=16D3=3.010-29 m3。假设水分子是一个紧挨一个地排列着的,则 1 mol水所含的水分子数目(即阿伏伽德罗常量)就等于NA=VmolV1=1.8 10-5m3/mol3.0 10-29m3=6.0 1023mol-1阿伏
19、伽德罗常量是一个重要的常量,它仿佛是联系宏观世界和微观世界之间的一座桥梁。利用阿伏伽德罗常量,可以把摩尔质量、摩尔体积等宏观量,跟分子质量、分子大小等微观量联系起来。有了它,我们可以通过对某些宏观量的测量,窥10见分子水平的微观世界。目前,阿伏伽德罗常量的公认值是NA=6.023 1023 mol-1在通常的计算中,可取 NA=6.0 1023 mol-1。案例分析案例 一间教室长 a=8 m,宽 b=7 m,高 c=4 m,假设教室里的空气处于标准状况。为了估算出教室空气中气体分子的数目,有两位同学各自提出了一个方案:方案1取分子直径 D=1 10-10 m,算出分子体积V1=16D3,根据
20、教室内空气的体积V=abc,算得分子数N=VV1=6 abc D3 方案2根据化学知识,1 mol空气在标准状况下的体积 V0=22.4 L=22.4 10-3 m3。由教室内空气的体积,可算出教室内空气的摩尔数n=VV0=abcV0。再根据阿伏伽德罗常量,算得空气中气体分子数N=n NA=abcV0NA请对这两种方案做一评价,并估算出你们教室空气中气体分子的数目。分析方案 1 把教室空气中的气体分子看成是一个个紧挨在一起的,没有考虑分子之间的空隙,不符合实际情况。通常情况下气体分子间距的数量级为 10-9 m,因此分子本身体积只是气体所占空间的极小一部分,常常可以忽略不计。方案 2 的计算方
21、法是正确的。请根据方案 2 完成计算。可以估算出教室空气中气体分子数目的数量级达到 1027。布朗运动在初中物理中已经知道,物质分子永不停息地做着无规则的热运动,扩散现象和布朗运动就是分子无规则运动的结果。扩散是由于分子做无规则运动使不同物质彼此进入对方的一种现象。无论气体、液体和固体等不同物态的物质,都会发生扩散。扩散在日常生活和生产实践中非常普遍,其中有一些扩散现象是十分有害的。例如,汽车排放的尾气,工厂排放的污水,燃煤的烟尘,工业废料中的重金属等都会向四周扩散,11第 章 分子动理论1污染空气、河水和土壤等。通过观察布朗运动可以更直观地体会分子运动的现象。如图 1-1-6 所示,将封有悬
22、浊液的载玻片置于显微镜下,调节显微镜,即可看到悬浊液中小颗粒的运动。如果追踪其中的一个小颗粒,每隔一定时间(如 30 s)记下它的位置,然后用线段把这些位置依次连接起来。可以看到,连成的折线曲曲折折,纵横交错(图 1-1-7)。这个现象说明小颗粒在不停地改变着自己的运动方向,做的是一种极其不规则的运动。小颗粒的这种无规则运动叫做布朗运动(Brownian motion)。这种小颗粒通常被叫做布朗粒子。图 1-1-6 用显微镜观察布朗运动图 1-1-7 布朗粒子无规则运动示意图布朗运动是否就是分子的运动?你认为应该怎样解释这个实验现象?我们知道,分子直径的数量级为 10-10 m,远比布朗粒子小
23、,人眼无法直接看到。因此,布朗粒子的运动并不是分子的运动。那么,布朗运动是怎样产生的呢?在物理学家迷茫了几十年后,爱因斯坦终于搞清楚了产生布朗运动的原因。原来,布朗粒子悬浮在液体中,会不断地受到其周围液体分子对它的撞击(图 1-1-8)。由于布朗粒子很小,因此这些撞击虽然来自四面八方,一般不会完全抵消。如果在某个瞬间,一个布朗粒子在某个与其运动不在一直线的方向上受到的撞击较强,那么它的运动方向就会发生相应的改变;如果在另一个瞬间,它在另一个与其运动方向不在一直线的方向上受到的撞击较强,那么它的运动方向又会发生另一种相应的改变。由于液体分子对布朗粒子的撞击是不规则的,布朗粒子也就不断地改变着运动
24、方向,做着毫无规则的运动。在布朗运动的实验中发现,液体的温度越高,布朗运动越明显。这间接说明了温度越高,液体分子的无规则运动越剧烈。在热力学中,我们研究的对象是由大量分子组成的集合体,叫图 1-1-8 布朗运动的原因a认定一个小颗粒进行观察所得到的一系列位置b把这些位置依次连接起来得到的折线12做热力学系统(thermodynamic system)。由此可见,一个宏观系统的冷与热跟系统内大量分子无规则运动的剧烈程度有关。在物理学上,把分子永不停息的无规则运动叫做热运动(thermal motion)。热运动与机械运动是完全不同的两种运动形式。热运动指的是系统内大量分子的无规则运动,机械运动则
25、是系统整体的或某一部分的宏观位置变动。例如,在观察布朗运动的实验中,放在实验桌上容器中的液体,作为一个整体来说相对于实验室参考系是静止的,并不做机械运动,但液体内的分子却不停地在运动,整个液体处在一种热运动状态。案例分析案例 几位同学通过对布朗运动的观察后,提出了以下一些看法,其中正确的是()。A.布朗运动是组成固体微粒的分子无规则运动的反映B.悬浮的固体微粒越小,布朗运动越显著C.观察时间越长,布朗运动越显著D.布朗运动的发生与温度的高低无关E.从缝隙中射入一缕阳光,从阳光中看到的尘埃的运动就是布朗运动F.雾霾天气时悬浮的 PM2.5 颗粒,也在空中做布朗运动请你根据布朗运动的产生原因、热运
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上科版 普通高中教科书 物理 选择性必修3 普通高中 教科书 选择性 必修
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内