中考数学试题分类汇编714精选.doc
《中考数学试题分类汇编714精选.doc》由会员分享,可在线阅读,更多相关《中考数学试题分类汇编714精选.doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2013中考全国100份试卷分类汇编圆周角1、(德阳市2013年)如图,在圆O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:圆O半径为,tanABC,则CQ的最大值是 A、5B、C、 D、答案:D解析:AB为O的直径,ACB=90,在RtPCQ中,PCQ=ACB=90,CPQ=CAB,ABCPQC;因为点P在O上运动过程中,始终有ABCPQC, ,AC、BC为定值,所以PC最大时,CQ取到最大值AB=5,tanABC,即BC:CA=4:3,所以,BC=4,AC=3PC的最大值为直线5,所以,所以,CQ的最大值为2、(2013济宁)如图,以等边三角形A
2、BC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G若AF的长为2,则FG的长为()A4BC6D考点:切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理专题:计算题分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,
3、由ABAF求出FB的长,在直角三角形FBG中,利用30所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长解答:解:连接OD,DF为圆O的切线,ODDF,ABC为等边三角形,AB=BC=AC,A=B=C=60,OD=OC,OCD为等边三角形,ODAB,又O为BC的中点,D为AC的中点,即OD为ABC的中位线,ODAB,DFAB,在RtAFD中,ADF=30,AF=2,AD=4,即AC=8,FB=ABAF=82=6,在RtBFG中,BFG=30,BG=3,则根据勾股定理得:FG=3故选B点评:此题考查了切线的性质,等边三角形的性质,含30直角三角形的性质,勾股定理,熟练掌握切线
4、的性质是解本题的关键3、(2013年临沂)如图,在O中,CBO=45,CAO=15,则AOB的度数是(A)75. (B)60. (C)45. (D)30.答案:B解析:连结OC,则OCB=45,OCA=15,所以,ACB=30,根据同弧所对圆周角等于圆心角的一半,知AOB=604、(2013自贡)如图,在平面直角坐标系中,A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则A的半径为()A3B4C5D8考点:圆周角定理;坐标与图形性质;勾股定理3718684专题:计算题分析:连接BC,由90度的圆周角所对的弦为直径,得到BC为圆A的直径,在直角三角形BOC中,由
5、OB与OC的长,利用勾股定理求出BC的长,即可确定出圆A的半径解答:解:连接BC,BOC=90,BC为圆A的直径,即BC过圆心A,在RtBOC中,OB=8,OC=6,根据勾股定理得:BC=10,则圆A的半径为5故选C点评:此题考查了圆周角定理,坐标与图形性质,以及勾股定理,熟练掌握圆周角定理是解本题的关键5、(2013成都市)如图,点A,B,C在上,则的度数为( )A.B.C. D.答案:D解析:因为同弧所对的圆周角等于它所对圆心角的一半,所以,BOC2BAC100,选D。6、(2013嘉兴)如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB=8,CD=2,则EC的长为(
6、)A2B8C2D2考点:垂径定理;勾股定理;圆周角定理专题:探究型分析:先根据垂径定理求出AC的长,设O的半径为r,则OC=r2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知ABE=90,在RtBCE中,根据勾股定理即可求出CE的长解答:解:O的半径OD弦AB于点C,AB=8,AC=AB=4,设O的半径为r,则OC=r2,在RtAOC中,AC=4,OC=r2,OA2=AC2+OC2,即r2=42+(r2)2,解得r=5,AE=2r=10,连接BE,AE是O的直径,ABE=90,在RtABE中,AE=10,AB=8,BE=6,在RtBCE中,BE=6,BC=4,CE=2
7、故选D点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键7、(2013雅安)如图,AB是O的直径,C、D是O上的点,CDB=30,过点C作O的切线交AB的延长线于E,则sinE的值为()ABCD考点:切线的性质;圆周角定理;特殊角的三角函数值分析:首先连接OC,由CE是O切线,可得OCCE,由圆周角定理,可得BOC=60,继而求得E的度数,则可求得sinE的值解答:解:连接OC,CE是O切线,OCCE,即OCE=90,CDB=30,COB=2CDB=60,E=90COB=30,sinE=故选A点评:此题考查了切线的性质、圆周角定理以及特殊角的三角函数值此
8、题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用8、(2013巴中)如图,已知O是ABD的外接圆,AB是O的直径,CD是O的弦,ABD=58,则BCD等于()A116B32C58D64考点:圆周角定理分析:由AB是O的直径,根据直径所对的圆周角是直角,可得ADB=90,继而求得A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案解答:解:AB是O的直径,ADB=90,ABD=58,A=90ABD=32,BCD=A=32故选B点评:此题考查了圆周角定理与直角三角形的性质此题难度不大,注意掌握数形结合思想的应用9、(2013泰安)如图,已知AB是O的直径,AD切O于点A,
9、点C是的中点,则下列结论不成立的是()AOCAEBEC=BCCDAE=ABEDACOE考点:切线的性质;圆心角、弧、弦的关系;圆周角定理专题:计算题分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到DAE=ABE,选项C正确;AC不一定垂直于OE,选项D错误解答:解:A点C是的中点,O
10、CBE,AB为圆O的直径,AEBE,OCAE,本选项正确;B=,BC=CE,本选项正确;CAD为圆O的切线,ADOA,DAE+EAB=90,EBA+EAB=90,DAE=EBA,本选项正确;DAC不一定垂直于OE,本选项错误,故选D点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键10、(2013泰安)如图,点A,B,C,在O上,ABO=32,ACO=38,则BOC等于()A60B70C120D140考点:圆周角定理分析:过A、O作O的直径AD,分别在等腰OAB、等腰OAC中,根据三角形外角的性质求出=2+2解答:解:过A作O的直径,交O于D
11、;OAB中,OA=OB,则BOD=OBA+OAB=232=64,同理可得:COD=OCA+OAC=238=76,故BOC=BOD+COD=140故选D点评:本题考查了圆周角定理,涉及了等腰三角形的性质及三角形的外角性质,解答本题的关键是求出COD及BOD的度数11、(2013莱芜)如图,在O中,已知OAB=22.5,则C的度数为()A135B122.5C115.5D112.5考点:圆周角定理分析:首先利用等腰三角形的性质求得AOB的度数,然后利用圆周角定理即可求解解答:解:OA=OB,OAB=OBC=22.5,AOB=18022.522.5=135C=(360135)=112.5故选D点评:本
12、题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键12、(2013湖州)如图,已知圆心角BOC=78,则圆周角BAC的度数是()A156B78C39D12考点:圆周角定理专题:计算题分析:观察图形可知,已知的圆心角和圆周角所对的弧是一条弧,根据同弧所对的圆心角等于圆周角的2倍,由圆心角BOC的度数即可求出圆周角BAC的度数解答:解:圆心角BOC和圆周角BAC所对的弧为,BAC=BOC=78=39故选C点评:此题要求学生掌握圆周角定理,考查学生分析问题、解决问题的能力,是一道基础题13、(2013鞍山)已知:如图,OA,OB是O的两条半径,且OAOB,点C在O上,则ACB的度数为()
13、A45B35C25D20考点:圆周角定理专题:探究型分析:直接根据圆周角定理进行解答即可解答:解:OAOB,AOB=90,ACB=AOB=45故选A点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半14、(2013苏州)如图,AB是半圆的直径,点D是AC的中点,ABC=50,则DAB等于()A55B60C65D70考点:圆周角定理;圆心角、弧、弦的关系专题:计算题分析:连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得ABD=CBD,则ABD=25,再根据直径所对的圆周角为直角得到ADB=90,然后利用三角形内角和定理可
14、计算出DAB的度数解答:解:连结BD,如图,点D是AC弧的中点,即弧CD=弧AD,ABD=CBD,而ABC=50,ABD=50=25,AB是半圆的直径,ADB=90,DAB=9025=65故选C点评:本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角15、(2013淮安)如图,点A、B、C是0上的三点,若OBC=50,则A的度数是()A40B50C80D100考点:圆周角定理3718684分析:在等腰三角形OBC中求出BOC,继而根据圆周角定理可求出A的度数解答:解:OC=OB,OCB=OBC=50,BOC=1805050=80,A=BOC=40故
15、选A点评:此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半16、(2013衡阳)如图,在O中,ABC=50,则AOC等于()A50B80C90D100考点:圆周角定理分析:因为同弧所对圆心角是圆周角的2倍,即AOC=2ABC=100解答:解:ABC=50,AOC=2ABC=100故选D点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半17、(2013宜昌)如图,DC 是O直径,弦ABCD于F,连接BC,DB,则下列结论错误的是()ABAF=BFCOF=CFDDBC=90考点:垂径定理;圆心角、弧
16、、弦的关系;圆周角定理分析:根据垂径定理可判断A、B,根据圆周角定理可判断D,继而可得出答案解答:解:DC是O直径,弦ABCD于F,点D是优弧AB的中点,点C是劣弧AB的中点,A、=,正确,故本选项错误;B、AF=BF,正确,故本选项错误;C、OF=CF,不能得出,错误,故本选项错误;D、DBC=90,正确,故本选项错误;故选C点评:本题考查了垂径定理及圆周角定理,解答本题的关键是熟练掌握垂径定理、圆周角定理的内容,难度一般18、(2013荆门)如图,在半径为1的O中,AOB=45,则sinC的值为()ABCD考点:圆周角定理;勾股定理;锐角三角函数的定义3718684分析:首先过点A作ADO
17、B于点D,由在RtAOD中,AOB=45,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值解答:解:过点A作ADOB于点D,在RtAOD中,AOB=45,OD=AD=OAcos45=1=,BD=OBOD=1,AB=,AC是O的直径,ABC=90,AC=2,sinC=故选B点评:此题考查了圆周角定理、三角函数以及勾股定理此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用19、(2013绥化)如图,点A,B,C,D为O上的四个点,AC平分BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A4B5C6D7考点:圆周角定理;圆心角、弧、弦的
18、关系;相似三角形的判定与性质分析:根据圆周角定理CAD=CDB,继而证明ACDDCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值解答:解:设AE=x,则AC=x+4,AC平分BAD,BAC=CAD,CDB=BAC(圆周角定理),CAD=CDB,ACDDCE,=,即=,解得:x=5故选B点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出CAD=CDB,证明ACDDCE20、(2013黔西南州)如图所示,线段AB是O上一点,CDB=20,过点C作O的切线交AB的延长线于点E,则E等于()A50B40C60D70考点:切线的性质;圆周角定理分析:连接OC,由CE
19、为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角CDB的度数,求出圆心角COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出E的度数解答:解:连接OC,如图所示:圆心角BOC与圆周角CDB都对弧BC,BOC=2CDB,又CDB=20,BOC=40,又CE为圆O的切线,OCCE,即OCE=90,则E=9040=50故选A点评:此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题熟练掌握性质及定理是解本题的关键2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学试题 分类 汇编 714 精选
限制150内