多晶薄膜与薄膜太阳电池.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《多晶薄膜与薄膜太阳电池.doc》由会员分享,可在线阅读,更多相关《多晶薄膜与薄膜太阳电池.doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、多晶薄膜与薄膜太阳电池引言 近几年来,光伏市场发展极其迅速,1997年光伏组件的销售量达122Vw,比上年增加38。世界主要几大公司宣称,近期光伏组件产量将会增加到263.5MW,其中薄膜太阳电池将达到91.5MW,占太阳电池总量的34.7。快速发展的光伏市场导致许多太阳电池生产厂家力求扩大生产能力,开辟大容量的太阳电池生产线。但目前太阳电池用硅材料大部分来源于半导体硅材料的等外品和单晶硅的头尾料,不能满足光伏工业发展的需要。同时硅材料正是构成晶体硅太阳电池组件成本中很难降低的部分,因此为了适应太阳电池高效率、低成本、大规模生产化发展的要求,最有效的办法是不采用由硅原料、硅锭、硅片到太阳电池的
2、工艺路线,而采用直接由原材料到太阳电他的工艺路线,即发展薄膜太阳电他的技术。 20世纪70年代开始,发展了许多制作薄膜太阳电他的新材料、CulnSe2、CdTe薄膜,晶体硅薄膜和有机半导体薄膜等;近20年来大量的研究人员在该领域中的工作取得了可喜的成绩。薄膜太阳电池以其低成本、高转换效率、适合规模化生产等优点,引起生产厂家的兴趣,薄膜太阳电他的产量得到迅速增长。如果以10年为一个周期进行分析,世界薄膜太阳电池市场年增长率为225。BP solar的光伏专家和企业界人士组成的一个研究组研究证明:如果一家具有60MW生产能力的薄膜电池生产厂家,使用硒钢铜薄膜太阳电池、非晶硅太阳电池、硫化铜薄膜太阳
3、电池中的任意一种就能获得生产成本低于1欧元瓦的无框架光伏组件,如果采用晶体硅技术实现上述同样的目标,就需要建成一家年产量达500Mw太阳电他的生产厂。因此,整个光伏市场将会逐渐被薄膜太阳电池取而代之。从技术成熟程度看,薄膜太阳电池生产仍有一定风险,但从薄膜技术不断完善和市场迅猛发展看,薄膜光伏太阳电池具有十分广阔和诱人的前景。1.CdS薄膜与Cu2S/CdS太阳电池 Cu2SCdS是一种廉价太阳电池,它具有成本低、制备工艺十分简单的优点。因此,在70-80年代曾引起国内外广大光伏科研者的广泛兴趣,以空前热情进行研究。在烧结体Cu2JCdS太阳电池研究的基础上,70年代开展了在多种衬底上使用直接
4、和间接加热源的方法沉积多晶CdS薄膜。薄膜制备方法主要有喷涂法、蒸发法等。1.1 CdS薄膜结构特性 CdS是非常重要的:-族化合物半导体材料。C北薄膜具有纤锌矿结构,是直接带隙材料,带隙较宽,为2.42eV。实验证明,由于CdS层吸收的光谱损失不仅与CdS薄膜的厚度有关,还与薄膜形成的方式有关。1.2 CdS薄膜光学性质 CdS薄膜广泛应用于太阳电池窗口层,并作为n型层,与p型材料形成p-n结,从而构成太阳电池。因此它对太阳电池的特性有很大影响,特别是对电池转换效率有很大影响。 一般认为,窗口层对光激发载流子是死层,其原因是,(1)CdS层高度惨杂,因此耗尽区只是CdS厚度的一小部分;(2)
5、由于CdS层内缺陷密度较高,空穴扩散长度非常短,如果耗尽区没有电场,载流子收集无效。 因此减少缺陷密度,可使扩散长度增加,能在CdS层内收集到更多的光激发载流子。1.3 CdS簿膜电学特性 一般而言,本征CdS薄膜的串联电阻很高,不利于做窗口层,在300-350之间,将In扩散入CdS中,把本征CdS变成n-CdS,电导率可达102-1cm-1左右。对CdS热处理也能使电导率增加108-1cm-1的量级。 在相对低温下进行热扩散,以免使膜退化。当在空气中加热到300时,由于氧在晶界有化学吸收,使光电导率衰减。 未掺杂的CdS薄膜的电阻率高,不是由于膜的不连续引起的,很可能是由于氧气介入,氧俘获
6、导带电子,形成化学吸附,存在晶界的多晶CdS薄膜更易吸收氧,在热退火过程中,消除氧的吸附作用,降低了电阻率,因此热处理不但有效地滤掉了薄膜内部的氧,而且有利于膜在优势晶向上长大。1.4 CdS薄膜和Cu2S/CdS太阳电池的制备方法1.4.1喷涂法 60年代初,已有人开始采用喷涂或涂刷技术,研究CdS薄膜及Cu2SCdS太阳电池。为了适应工业化生产CdS薄膜,R,R.Chamberlin和J.F.Jorn等人发展了这种方法。 用喷涂法制备CdS薄膜,其方法主要是将含有3和Cd的化合物水溶液,用喷涂设备喷涂到玻璃或具有SnO2导电膜的玻璃及其它材料的衬底上,经热分解沉积成CdS薄膜。 各国不同学
7、者采用的工艺都基于如下热分解效应: CdC12+(NH2)2CS+2H20CdS十2NH4Cl十C02 热分解温度Ts250。 热分解温度、喷涂溶液组分,喷速以及SnO2透明电极的电阻率,窗口效应的利用等是影响电池性能的主要因素。 为了制备太阳电池,在CdS膜表面喷涂转型物质,如含Cu+的氯化亚铜溶液,或采用常规浸泡工艺,使之形成一定厚度的Cu2S层,并经热扩散等工艺和喷涂金属层作电极,形成太阳电池。 在Cu2S/CdS太阳电池中,由于两种材料的亲和力失配,相差0.3eV,因此使扩散电位被限制在0.8eV,降低了太阳电池的开路电压。为此,提出了采用由CdS和ZnS制备Cd1-XZnXS来代替C
8、dS,以改善小层的电子亲和力和降低界面态数目。 由于喷涂法制备Cu2S/CdS(Cu2S/Cd1-XZnXS)薄膜太阳电池,不采用真空设备,使工艺得到简化,并为定量掺杂、控制膜厚和薄膜电阻率及重现性带来方便。 1977年R.Feigllsen研制出转换效率为7.8的Cu2SCd0.9Zn0.1S太阳电池。1.4.2 蒸发法 采用电子束技术蒸发CdS原料油于装料器外壳不加热,并进行水冷,因而减少了污染,获得的膜牢固、致密、纯度高、耐腐蚀性好、剩余原料组分不变,可以循环使用。因此该方法获得了广泛应用。 长春应化所张瑞峰等人用电子束蒸发制备CdS薄膜,改进了电子束蒸发设备,避免了在蒸发过程中CdS粒
9、子飞溅。采用常规氯化亚铜浸泡法形成Cu多层,从而构成Cu2S/CdS太阳电池,电池最佳转换效率为6.2。 真空加热蒸发制备CdS薄膜是常采用的方法。长春应化所王福善等人用石墨作加热器,调节源上方挡板的大小和位置,获得无溅射颗粒的CdS薄膜,并用氯化亚铜水溶液浸泡形成Cu2S层,构成Cu2S/CdS太阳电池,其最高效率为78。 长春应化所王给祥等人,改进了蒸发工艺,对Cu2S层进行HCI腐蚀,使表面形成绒面织构,所获得的Cu2S/CdS太阳电池最佳有效面积转换效率为89。1.5 Cu28CdS太阳电池机理研究 由于Cu2S/CdS薄膜太阳电池工艺不稳定,电池转换效率不高,稳定性差,易衰降,因此阻
10、碍了这一类型太阳电池的发展。为此许多学者对这种电池开展了深入细致的机理研究。上海能源所黄芳龙用扫描电子能谱仪测量了不同效率的薄膜Cu2SCdS太阳电他的AES谱。认为真空蒸发形成CdS膜和化学浸泡法形成Cu2s层构成的Cu2S/CdS电池为缓变结电池,高浓度Cu2S区厚0.05m-0.1m,铜过渡区厚度为1m,在一定的结深和过渡区范围内,电池效率与高浓度Cu2S层厚度(结深)成正比,与铜过渡区厚度成反比,并计算出电他的极限效率为18,实际工艺可能达到12.5。黄芳龙进一步研究了扩散对Cu2S/CdS太阳电池效率及稳定性的影响。扩散会改变电池各元素的组成比,导致电池效率下降,特别是封装材料中C和
11、Cu2S层中Cu的扩散最甚。因此选择无机材料作为封装材料和在Cu2S层中加入作为间隙原子的其它材料或选用其它材料如CulnSe2、CdTe等代替Cu2S层。由此Cu2S/CdS这种结构的太阳电池,逐渐失去人们的兴趣。2 .CulnSe2多晶薄膜材料与CdSCulnSe2太阳电池2.1 CUInSe2薄膜材料的结构特性 Cu1nSe2(CIS)是一种三元-2族化合物半导体,具有黄铜矿、闪锌矿两个同素异形的晶体结构,其高温相为闪锌矿结构(相变温度为980C),属立方晶系,布拉非格子为面心立方,晶格常数为5.8610-8cm,密度为5.55gcm3其低温相是黄铜矿结构(相变温度为810C),属正方晶
12、系,布拉非格子为体心四方,(dct),空间群为I 42d=D2d12,每个晶胞中含有4个分子团,其晶格常数为5.782l08cm,11.62110-8cm,与纤锌矿结构的CdS(=4.61310-8cm,7.16l0-8cm)晶格失配率为1.2。这一点使它优于CulnSe2等其它Cu三元化合物。 Cu1nSe2是直接带隙半导体材料,77K时的带隙为Eg=1.04eV,300K时Eg=1.02eV,其带隙对温度的变化不敏感。 1.04eV的禁带宽度与地面光伏利用对材料要求的最佳带隙(1.5eV)较为接近,但这一点劣于CulnSe2(Eg=1.55eV)。 Cu1nSe,的电子亲和势为4.58eV
13、,与CdS的电子亲和势(4.50eV)相差很小(0.08eV),这使得它们形成的异质结没有导带尖峰,降低了光生载流子的势垒。2.2 CulnSe2材料的光学性质 Cu1nSe2具有一个0.95eV-1.04eV的允许直接本征吸收限和一个1.27eV的禁带直接吸收限,以及由于以w一Redfiled效应而引起的在低吸收区(长波段)的附加吸收。 Cu1nSe2材料具有高达以610cm-1的吸收系数,这是到目前为止所有半导体材料中的最高值。但是关于Cu1nSe2为什么会有这样高的吸收系数,其机理尚不完全清楚。具有这样高的吸收系数,亦即这样小的吸收长度(1),对于太阳电池基区光子的吸收、少数载流子的收集
14、,因而也即对光电流的收集产生了非常有利的条件。这也就是CdSCu1nSe2太阳电池会有39mA/cm2这样高的短路电流密度的原因,这样小的吸收长度,使薄膜的厚度可以很薄,而且薄膜的少数载流子扩散长度也是很容易超过1,甚至对结晶程度很差或者多子浓度很高的材料,其扩散长度也容易超过V0、Cu1nSe2的光学性质主要取决于材料的元素组份比、各组份的均匀性、结晶程度、晶格结构及晶界的影响。大量实验表明,材料的元素组份与化学计量比偏离越小,结晶程度好,元素组分均匀性好,温度越低其光学吸收特性越好。具有单一黄铜矿结构的Cu1nSe2薄膜,其吸收特性比含有其它成份和结构的薄膜要好。表现为吸收系数增高,并伴随
15、着带隙变小。 富cu的薄膜比富1n的薄膜吸收特性好,原因是富Cu的薄膜比富In的薄膜的结晶程度好。沉积衬底温度高的(770K)富Cu薄膜比沉积衬底温度低的(570K)薄膜的吸收特性好1原因是前者具有单一的黄铜矿结构,而后者不具有。 室温(300K)下,单晶Cu1nSe2的直接带隙为0.95eV-0.97eV。多晶薄膜为1.02eV,而且单晶的光学吸收系数比多晶薄膜的吸收系数要大。引起这一差别的原因是由于单晶材料较多晶薄膜有更完善的化学计量比,组份均匀性和结晶好。在惰性气体中进行热处理后,多晶薄膜的吸收特性向单晶的情况靠近,这说明经热处理后多晶薄膜的组份和结晶程度得到了改善。然而,有人认为这种差
16、别是由于膜中价带边的界面态和晶粒间界的原因造成。 吸收特性随材料工作温度的下降而下降,其带隙随温度的下降而稍有升高。当温度由室温300K降到10DK时,Eg上升0.02eV,即100K时,单晶CulnSe2的带隙为0.98eV,多晶CulnSe2的带隙为1.04eV。 不论单晶或多晶在低吸收区出现一个尾巴,即出现了附加吸收区,该区中使得2-hv不再为直线,不再遵从允许直接跃迁的ahv-A(hv-Eg)这一关系。 对于单晶,这一现象由于伴随着声子吸收的跃迁产生,这种跃迁遵守=A(hv-EgiEp)2exp(EpkT)-1,其中A为常数,Ep为声子能量,Egi为间接带隙。 对于多晶薄膜,上述两种h
17、v关系都不成立,这种附加吸收可能是由于Dow-Redfiled效应引起的。2.3 CulnSe2材料的电学性质 CulnSe2材料的电学性质(电阻率、导电类型、载流子浓度、迁移率)主要取决于材料的元素组份比,以及由于偏离化学计量比而引起的固有缺陷(如空位、填隙原子、替位原子),此外还与非本征掺杂和晶界有关。2.3.1 导电类型 对材料的元素组份比接近化学计量比的情况,按照缺陷导电理论,一般有如下的结果:当Se不足时,Se空位呈现施主;当Se过量时,呈现受主;当Cu不足时,Cu空位呈现受主;当Cu过量时,呈现施主。当In不足时,In空位呈现受主。当In过量时,呈现施主。 在薄膜的成份偏离化学计量
18、比较大的情况下,情况变得非常复杂。因为这时薄膜的组份不再是具有单一黄铜矿结构的CulnSe2,而包含其它的相(Cu2S2、Cu2-xSe、In2Se3、InSe)。在这种情况下,薄膜的导电性主要由CuIn比决定,一般随着CuIn比的增加,其电阻率下降,p型导电性增强。导电类型与Se浓度的关系不大,但是p型导电性随着Se浓度的增加而增加。2.3.2 薄膜导电性对元素组份比的依赖 实验证明,CulnSe2薄膜的导电性与薄膜的成份有如下关系: 1)当CuIn1时,不论Se(CuIn)之比大于还是小于1,薄膜的导电类型都为p型,而且具有低的电阻率,载流子浓度为1016-1020cm3但是当Se(CuI
19、n)1时,发现有Cu2-xSe存在。 2)当CuIn1,若Se(CuIn)1时,则薄膜为p型,具有中等的电阻率,或薄膜为n型,具有高的电阻率。若Se(CuIn)1,则薄膜为p型,具有高的电阻率,或薄膜为n型,具有低的电阻率。其中当CuIn1且Se(CuIn)1时的高阻p型薄膜已在实验中获得了高效电池(10)。2.4.CulnSe2薄膜生长工艺 Cu1nSe2薄膜的生长方法主要有:真空蒸发法、Cu-In合金膜的硒化处理法(包括电沉积法和化学热还原法)、封闭空间的气相输运法(CsCVT)、喷涂热解法、射频溅射法等。241单源真空蒸发法 首先用元素合成法制备CulnSe2源材料。制法是,按化学计量比
20、称取高纯的(5N)Cu、In、Se2粉未。一般Se稍过量(0.02at)以获得p型材料,将源料放入一端封闭的石英管中,然后抽真空,当真空度到1 33X10-3pa以上时,将石英管封闭,制成一个安瓶,放入烧结炉中,缓慢加热到D50C进行合成。源料要求具有单一黄铜矿结构,且为p型。 CulnSe2源材料的合成,也可先合成CuSe和In2Se3,然后再将适量CuSe和In2Se3进行合成以获得CulnSe3。 将合成的多晶CulnSe2源材料经仔细研磨后,用电子束或电阻加热器进行蒸发,以获得薄膜。 直接用满足化学计量比的CulnSe2材料作蒸发源,所得薄膜一般为n型,如果在源中加入适量Se(20wt
21、)则可获得p型薄膜,衬底温度一般控制在200C300C之间,以250C为佳。此法的优点是,设备简单,缺点是不易控制组份和结构。242双源真空蒸发法 一个源中放入用元素合成法制得的CulnSe2粉未作为主要蒸发源,另一个源中放入元素Se,以控制薄膜的导电类型及载流子浓度。分别控制两源的蒸发速率,即可获得理想的薄膜,衬底温度一般在200-350之间。此法较单源法易于控制薄膜的成份和结构。24.3三源真空蒸发法 将高纯的Cu、In、Se分别放入三个独立的源中,并用相应的传感器系统,监视各自的蒸发速率,然后反馈到各自的蒸发源控制器中,控制各自的蒸发速率,从而获得理想的薄膜。 衬底温度一般在350-45
22、0之间。此法优点是,易于控制组份和结构,且较前2种方法,不用合成CulnSe2源料,缺点是,设备复杂,此法是当前应用最广、研究最多的方法。244封闭空间气相输运法(CsCVT) 用元素合成法制备近似满足化学计量比的p型CulnSe2多晶晶块作为输运源料,用碘或碘化氢气体作为输运剂,以铝片、石墨片、wA12O2或MO玻璃作衬底,在封闭系统中进行蒸发。 CulnSe2与碘的可逆反应为: ,即固体的CulnSe2在高温下与碘蒸气发生反应,生成蒸气压高的Cu1、InI及Se2气体。上述反应是可逆的。当温度高时反应由左向右进行,当温度低时,反应由右向左进行。 所以如果在源和衬底间保持一个温度梯度,使得在
23、源上反应是从左到右,而在衬底上反应由右向左,则便可将CuInSe2源输运到衬底上,形成CuInSe2薄膜。 HI也可用作输运剂,因为在高温下,HI分解为碘蒸气和氢气。 输运系统主要参数为,衬底温度为500-600,源温为500-600,衬底与源温差为20-30之间,间距为1mm,碘蒸发压为2.67Pa-4.00Pa。该法的优点是,设备较简单,源利用率高,成膜质量好。缺点是,膜中有碘杂质存在。245化学热还原法沉积Cu-In合金膜再进行硒化处理 利用铜、钢的盐和氧化物在高温氢气氛中还原淀积Cu-In合金膜,然后在H2土气氛中进行硒化处理,便可得CulnSe2薄膜。 可用于热还原的Cu、In化合物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多晶 薄膜 太阳电池
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内