《线性代数与解析几何》复习要点.pptx
《《线性代数与解析几何》复习要点.pptx》由会员分享,可在线阅读,更多相关《《线性代数与解析几何》复习要点.pptx(109页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、线性代数与解析几何复习要点,一. 行列式,二. 矩阵,三. 向量,四. 线性方程组,六. 二次型,七. 综合与提高,五. (小结)初等变换在线性代数中的地位,内容提要,一. 行列式,线性代数几何与代数复习要点,一. 行列式,行 列 式,定义,性质,计算,方程组,秩,秩,极大无关组,线性相关性,特征多项式,伴随矩阵,逆矩阵,面积/体积,叉积/混合积,一. 行列式,行 列 式 的 定 义,低 阶,一 般,一阶,递推 公式,排列 组合,a11A11+a12A12+a1nA1n,a11A11+a21A21+an1An1,二阶,三阶,线性代数几何与代数复习要点,二阶行列式,一. 行列式,a11 a12
2、a21 a22,a11(1)1+1a22 + a12 (1)1+2a21,a11 a12 a21 a22,线性代数几何与代数复习要点,三阶行列式,一. 行列式,a11 a12 a13 a21 a22 a23 a31 a32 a33,= a11 a22 a33 + a12 a23 a31 + a13 a21 a32 a11 a23 a32 a12 a21 a33 a13 a22 a31,= a11A11 + a12A12 + a13A13,线性代数几何与代数复习要点,一. 行列式,a11 a12 a13 a21 a22 a23 a31 a32 a33,a11 a12 a13 a21 a22 a2
3、3 a31 a32 a33,a11的余子式:,a22 a23 a32 a33,M11 =,代数余子式:,A11 = (1)1+1M11,a12的余子式:,a21 a23 a31 a33,M12 =,代数余子式:,A12 = (1)1+2M12,a13的余子式:,M13 =,代数余子式:,A13 = (1)1+3M13,a21 a22 a31 a32,a11 a12 a13 a21 a22 a23 a31 a32 a33,线性代数几何与代数复习要点,行列式的性质,一. 行列式,性质1. 互换行列式中的两列, 行列式变号.,推论. 若行列式 D 中有两列完全相同, 则 D = 0.,性质2. (线
4、性性质) (1) det(1, , kj, , n) = kdet(1, , j, , n); (2) det(1, , j+j, , n) = det(1, , j, , n) + det(1, , j, , n).,线性代数几何与代数复习要点,一. 行列式,推论. 若行列式 D 中有两列元素成比例, 则 D = 0.,性质3. 把行列式的某一列的k倍加到另一列 上去, 行列式的值不变.,a11 (a1i + ka1j) a1j a1n a21 (a2i + ka2j) a2j a2n an1 (ani + kanj) anj ann,线性代数几何与代数复习要点,一. 行列式,例2. 设D
5、=,证明: D = D1D2.,证明: 对D1施行ci+kcj 这类运算, 把D1化为下三 角形行列式:,= p11 pmm ,a11 a1m 0 0,am1 amm 0 0,c11 c1m b11 b1n,cn1 cnm bn1 bnn,线性代数几何与代数复习要点,一. 行列式,对D2施行ci+kcj 这类运算, 把D2化为下三角形行列式:,于是对D的前m列施行上述ci+kcj 运算, 再对D的后n列 施行上述施行ci+kcj 运算, 可得:,= p11 pmm q11 qnn =D1D2.,线性代数几何与代数复习要点,一. 行列式,性质4. 设A, B为同阶方阵, 则|AB| = |A|B
6、|.,性质5. 设A方阵, 则|AT| = |A| .,注: 根据方阵的性质5, 前面几条关于列的性 质可以翻译到行的情形. 例如:,性质1. 互换行列式中的两行, 行列式变号.,线性代数几何与代数复习要点,定理1. n阶行列式D等于它的任意一行 (列) 的各元素与其对应的代数余子式乘积 之和. 即,D = a11A11 + a12A12 + + a1nA1n = a21A21 + a22A22 + + a2nA2n = = an1An1 + an2An2 + + annAnn = a11A11 + a21A21 + + an1An1 = a12A12 + a22A22 + + an2An2
7、= = a1nA1n + a2nA2n + + annAnn .,一. 行列式,线性代数几何与代数复习要点,一. 行列式,性质6. n阶行列式的某一行(列)元素与另一 行(列)的对应的代数余子式乘积之和 为零. 即 ai1Aj1 + ai2Aj2 + + ainAjn = 0 (i j) a1iA1j + a2iA2j + + aniAnj = 0 (i j).,定理2.设n阶行列式D = |aij|, 则,注: 克罗内克(Kronecker)记号,线性代数几何与代数复习要点,一. 行列式,行列式的计算,1. 二, 三阶行列式对角线法则.,2. 利用初等变换化为三角形.,(其中n 2,x a)
8、.,例3. 计算n阶行列式,线性代数几何与代数复习要点,一. 行列式,解:,= x+(n1)a(xa)n1.,线性代数几何与代数复习要点,一. 行列式,3. 按某一行(列)展开降阶.,4. 递推/归纳.,(未写出的元素都是0).,例4. 计算2n阶行列式,行列式的计算,1. 二, 三阶行列式对角线法则.,2. 利用初等变换化为三角形.,线性代数几何与代数复习要点,一. 行列式,解: D2n=,= a,+(1)2n+1b,线性代数几何与代数复习要点,一. 行列式,= ad D2(n1) bc D2(n1) = (ad bc) D2(n1) = (ad bc)2D2(n2) = (ad bc)3D
9、2(n3) = = (ad bc)n1 D2 = (ad bc)n.,线性代数几何与代数复习要点,一. 行列式,例5. 证明n阶级(n2)范德蒙(Vandermonde)行列式,证明:当n =2时, D2 = (a2 a1). 现设等式对于(n1)阶范德蒙行列式成立, 则,线性代数几何与代数复习要点,一. 行列式,Dn =,1 1 1 a1 a2 an a12 a22 an2 a1n-1 a2n-1 an n-1, ( a1), ( a1), ( a1),线性代数几何与代数复习要点,一. 行列式,= (a2a1)(a3a1)(ana1),线性代数几何与代数复习要点,一. 行列式,5. 升阶.,
10、(其中a1a2an 0).,例6. 计算n阶行列式,3. 按某一行(列)展开降阶.,4. 递推/归纳.,行列式的计算,1. 二, 三阶行列式对角线法则.,2. 利用初等变换化为三角形.,线性代数几何与代数复习要点,一. 行列式,解: Dn=,1+a1 1 1 1 1+a2 1 1 1 1+an,线性代数几何与代数复习要点,一. 行列式,“伞形” 行列式,I lve it!,线性代数几何与代数复习要点,一. 行列式,=,1 1 1 1 1 a1 0 0 1 0 a2 0 1 0 0 an,注意已知条件: a1a2an 0, 否则不能 1/a1, , 1/an!,线性代数几何与代数复习要点,二.
11、矩阵,二. 矩阵,矩 阵,运算,分块运算,初等变换,线性 方程组,向量 空间,向量组,二次型,特征值,特征向量,相似,秩,线性代数几何与代数复习要点,二. 矩阵,矩阵的运算,线性代数几何与代数复习要点,二. 矩阵,行矩阵,列 矩 阵,零矩阵,初等 矩阵,对称 矩阵,对角 矩阵,单位矩阵,反对称 矩阵,正交 矩阵,正定 矩阵,可逆 矩阵,线性代数几何与代数复习要点,二. 矩阵,行矩阵A1n: 只有一行, 又名行向量.,列矩阵An1: 只有一列, 又名列向量.,零矩阵: 每个元素都是0, 常记为Omn或O.,初等矩阵: 由单位矩阵经过一次初等变换所得.,方阵: 行数=列数.,对称矩阵: AT =
12、A.,对角矩阵: diag1, 2, , n, 常用表示.,数量矩阵: kE, kI, 其中k为常数.,单位矩阵: 主对角线元素都是1, 其余元素都是0, 常记为E或I.,反对称矩阵: AT = A.,正交矩阵: QTQ = QQT = E.,正定矩阵: AT = A且x 有xTAx 0.,可逆矩阵: AB = BA = E.,线性代数几何与代数复习要点,二. 矩阵,矩 阵 的 乘 积,向量组之间的线性表示(系数矩阵),线性变换的合成(z = By = BAx),二次型的矩阵表达式( f(x) = xTAx),不满足消去律,结合律的妙用,不满足交换律,线性方程组的矩阵表达式(Ax = b),两
13、组基之间的联系(过渡矩阵),有非平凡的零因子,(T)k,(P1AP)k,向量的内积( , = T ),实际问题(背景),线性代数几何与代数复习要点,二. 矩阵,值得注意的现象:,(1) AB和BA未必相等.,(2) (AB)2和A2B2未必相等.,线性代数几何与代数复习要点,二. 矩阵,值得注意的现象:,(1) AB和BA未必相等.,(2) (AB)2和B2A2未必相等.,(3) (A + B)2和A2 + 2AB + B2未必相等, (A + B)(A B)和A2 B2未必相等.,线性代数几何与代数复习要点,二. 矩阵,值得注意的现象:,(1) AB和BA未必相等.,(4) “AB = O”
14、推不出“A = O或B = O”.,(2) (AB)2和B2A2未必相等.,(3) (A + B)2和A2 + 2AB + B2未必相等, (A + B)(A B)和A2 B2未必相等.,线性代数几何与代数复习要点,二. 矩阵,值得注意的现象:,(1) AB和BA未必相等.,(4) “AB = O”推不出“A = O或B = O”.,(5) “AB = AC且A O”推不出“B = C”.,(2) (AB)2和B2A2未必相等.,(3) (A + B)2和A2 + 2AB + B2未必相等, (A + B)(A B)和A2 B2未必相等.,线性代数几何与代数复习要点,二. 矩阵,逆矩阵,定义:
15、 AB=BA=I,存在方阵B使AB=I,存在方阵B使BA=I,|A| 0,Ax = 只有零解,Ax = b 有唯一解,秩(A) = n,A的行(列)向量组 线性无关,A与 I相抵(等价),A为有限多个初等 矩阵的乘积,A的特征值全非零,计算A1,利用 伴随矩阵,利用 初等变换,(A1)1 = A,唯一性,(A1)m = (Am)1,(AT)1 = (A1)T,(kA)1 = k1A1,(AB)1 = B1A1,|A1| = |A|1,若A可逆, 则 秩(AB) = 秩(B) 秩(CA) = 秩(C),是A的特征值 1是A1的特征值,线性代数几何与代数复习要点,二. 矩阵,设A可逆, 则A可以经
16、过有限次初等行变换化为 行最简形单位矩阵E.,A E,(A E) (E ?),P1(A E),P2P1(A E),Pl-1 P2P1(A E),Pl Pl-1P2P1(A E),P1A,P2P1A,Pl-1 P2P1A,Pl Pl-1P2P1A,(Pl Pl-1P2P1A, Pl Pl-1P2P1),? = A1 ,线性代数几何与代数复习要点,二. 矩阵,设A可逆, 则A可以经过有限次初等行变换化为 行最简形单位矩阵E.,下面用初等变换解矩阵方程AX = B. 注意到X = A1B.,(A B) (E ?),P1(A B),P2P1(A B),Pl-1 P2P1(A B),Pl Pl-1P2P
17、1(A B),(Pl Pl-1P2P1A, Pl Pl-1P2P1B),? = A1B = X ,分块矩阵,线性代数几何与代数复习要点,二. 矩阵,加法,逆矩阵,乘法,数乘,转置,行列式,用初等行变换求A1 (A, E)(E, A1) 解AX = B (A, B)(E, A1B),Ax = b的增广矩阵 (A, b),向量组矩阵,矩阵的相似标准形 (Jordan标准形),分 块 矩 阵,线性代数几何与代数复习要点,二. 矩阵,矩 阵 的 分 块 运 算,注: 分块之前A与B是同类型的, 分块之后, 与Aij对应的Bij是 同类型的(否则加不起来).,加法,逆矩阵,乘法,数乘,转置,行列式,线性
18、代数几何与代数复习要点,二. 矩阵,矩 阵 的 分 块 运 算,加法,逆矩阵,乘法,数乘,转置,行列式,k 为一个数,Easy!,线性代数几何与代数复习要点,二. 矩阵,矩 阵 的 分 块 运 算,注: 分块之前A的列数等于B的 行数; 分块之后, 各Aik的列 数分别等于对应的Bkj的行 数(否则乘不起来).,乘法,逆矩阵,转置,行列式,加法,数乘,线性代数几何与代数复习要点,二. 矩阵,矩 阵 的 分 块 运 算,转置,加法,数乘,逆矩阵,行列式,乘法,线性代数几何与代数复习要点,二. 矩阵,矩 阵 的 分 块 运 算,行列式,其中A, B都是方阵.,也未必成立, 例如,但即使A, B,
19、C, D都是方阵,0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0,= 1.,= |A1|At|.,加法,数乘,乘法,逆矩阵,转置,线性代数几何与代数复习要点,二. 矩阵,矩 阵 的 分 块 运 算,逆矩阵,若A1, , At都是可逆方阵,(不必是同阶的), 则,加法,数乘,乘法,转置,行列式,线性代数几何与代数复习要点,二. 矩阵,与初等矩阵 的联系,解矩阵方程,求逆矩阵,可逆性,解线性方程组,求L(1, , s) 的基和维数,求矩阵的秩,保矩阵的秩,求合同标准形,求极大无关组,矩 阵 的 初 等 变 换,求向量组的秩,线性代数几何与代数复习要点,二. 矩阵,矩阵的秩,最高阶非
20、零子式的阶数,行向量组的秩,列向量组的秩,r(A) = r(AT),A与B等价r(A) = r(B),P与Q可逆r(A)=r(PAQ),maxr(A), r(B) r(A, B) r(A)+r(B),A与B相似r(A) = r(B),A与B合同r(A) = r(B),r(A+B) r(A) + r(B),r(AB) minr(A), r(B),行空间的维数,列空间的维数,线性代数几何与代数复习要点,二. 矩阵,特 征 值 和 特 征 向 量,|EA| = |E(P1AP)|,i = tr(A), i = |A|,A可逆A的特征值 全不为零, 此时 A = A1 =1,|EA| = |EAT|,
21、A = f(A) =f(),对应于不同特征值的 特征向量线性无关,AT=AR且 对应于不同特征值 的特征向量正交,相似对角化,用A=P1P 计算Ak,化二次型为 标准形,|EA| = 0,(EA)x = 0,A = 其中 ,线性代数几何与代数复习要点,二. 矩阵,A = ,(EA) = 0,|EA| = 0,特征方程,特征多项式,EA,特征矩阵,特征值,特征向量,n阶方阵,非零向量,线性代数几何与代数复习要点,二. 矩阵,例11. 求A =,的特征值和特征向量.,解:,所以A的特征值为1=2, 2=4.,解之得,A的对应于1=2的特征向量为,对于1=2, (2EA)x = 0 即,3 1 1
22、3,= (2)(4).,(0 k R).,线性代数几何与代数复习要点,二. 矩阵,例11. 求A =,的特征值和特征向量.,解:,所以A的特征值为1=2, 2=4.,解之得,A的对应于2=4的特征向量为,对于2=4, (4EA)x = 0 即,3 1 1 3,= (2)(4).,(0 k R).,线性代数几何与代数复习要点,二. 矩阵,相 似 矩 阵,反身性,对称性,传递性,AB AB(相抵/等价),AB |A| = |B|,AB r(A) = r(B),AB 多项式 f(A) f(B),AB|EA|=|EB|,AB tr(A) = tr(B),定义,相似 对角 化,Ann有n个不同的特征值
23、Ann对角阵,Ann对角阵A有n个线性无关的特征向量,实对称矩阵一定可以正交相似对角化,线性代数几何与代数复习要点,二. 矩阵,求|IA| = 0的根,有重根吗?,无,A可以相似对角化,有,秩(iIA) = nni?,否,Jordan化,A不能相似对角化,求n个线性无关的 特征向量p1, , pn, 令P = p1, , pn,P 1AP=diag1,n,线性代数几何与代数复习要点,二. 矩阵,例14. 把,正交相似对角化.,解: |IA| = (2)(4)2. 所以A的特征值为1= 2, 2= 3= 4. (2IA)x = 的基础解系1= (0,1, 1)T. (4IA)x = 的基础解系2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数与解析几何 线性代数 解析几何 复习 要点
限制150内