咸宁半导体电池管理芯片项目投资计划书_模板范文.docx
《咸宁半导体电池管理芯片项目投资计划书_模板范文.docx》由会员分享,可在线阅读,更多相关《咸宁半导体电池管理芯片项目投资计划书_模板范文.docx(116页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域咨询/咸宁半导体电池管理芯片项目投资计划书咸宁半导体电池管理芯片项目投资计划书xxx有限公司报告说明电量计IC负责采集电池信息并计算电量,与电池保护IC可以分立,也可以集成。据TI官网产品信息,电池包内部包含电芯、电量计IC、保护IC、充放电MOSFET、保险丝FUSE、NTC等元件。一级保护IC控制充、放电MOSFET,保护动作是可恢复的,即当发生过充、过放、过流、短路等安全事件时就会断开相应的充放电开关,安全事件解除后就会重新恢复闭合开关,电池可以继续使用,一级保护可以在高边也可以在低边。二级保护控制三端保险丝,保护动作是不可恢复的,即一旦保险丝熔断后电池不能继续使用,又称永久失效。电
2、量计IC采集电芯电压、电芯温度、电芯电流等信息,通过库仑积分和电池建模等计算电池电量、健康度等信息,通过I2C/SMBUS/HDQ等通信端口与外部主机通信。电量计IC与电池保护IC既可分立,也可集成。硬件、算法、固件是电量计的三大核心,pack-side电量计更具优势。电量计的输入是电池电压、电流和温度,然后通过对电池建模来计算输出容量信息,其三大核心是:(1)硬件,来实现高精度采样、低功耗运行;(2)算法,来对电池建模;(3)固件,把算法编程实现,计算输出容量信息。据TI官网,在选择电量计时,通常需要考虑到电芯化学类型、电芯串联数目、通信接口、电量计放在电池包内还是放在系统板、电量计算法、是
3、否集成电池保护均衡等功能、支持充放电电流大小、存储介质和封装。相比System-side电量计,Pack-side电量计直接采样电芯电压,电压更准确,有利于提高电量计量、充电以及保护精度;Pack-side采用可集成加密认证算法的电量计综合成本更低;Pack-side电池保护板PCM电压、电流、温度校准更容易,项目开发周期更短;Pack-side电量计面对可插拔电池时RAM数据不丢失,数据更准确。根据谨慎财务估算,项目总投资29195.51万元,其中:建设投资22052.20万元,占项目总投资的75.53%;建设期利息246.80万元,占项目总投资的0.85%;流动资金6896.51万元,占项
4、目总投资的23.62%。项目正常运营每年营业收入61000.00万元,综合总成本费用50626.79万元,净利润7578.68万元,财务内部收益率18.08%,财务净现值9306.89万元,全部投资回收期6.02年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。该项目符合国家有关政策,建设有着较好的社会效益,建设单位为此做了大量工作,建议各有关部门给予大力支持,使其早日建成发挥效益。本报告基于可信的公开资料,参考行业研究模型,旨在对项目进行合理的逻辑分析研究。本报告仅作为投资参考或作为参考范文模板用途。目录第一章 行业、市场分析9一、 笔记本电脑及平板电脑:市场规模平稳,技
5、术难度更高9二、 BMS是电池产业链的重要组成部分10第二章 项目建设背景、必要性13一、 智能手表:功能多样化催生电池管理芯片需求进一步提升13二、 智能手机性能迭代对BMIC要求不断提升,国产芯片加速替代14三、 深化对外开放,融入“双循环”新格局17四、 加强创新引领,不断增强发展动能17第三章 项目概述18一、 项目概述18二、 项目提出的理由20三、 项目总投资及资金构成21四、 资金筹措方案22五、 项目预期经济效益规划目标22六、 项目建设进度规划22七、 环境影响22八、 报告编制依据和原则23九、 研究范围24十、 研究结论24十一、 主要经济指标一览表25主要经济指标一览表
6、25第四章 建筑技术分析27一、 项目工程设计总体要求27二、 建设方案28三、 建筑工程建设指标29建筑工程投资一览表29第五章 产品规划方案31一、 建设规模及主要建设内容31二、 产品规划方案及生产纲领31产品规划方案一览表31第六章 法人治理33一、 股东权利及义务33二、 董事38三、 高级管理人员43四、 监事45第七章 运营管理模式48一、 公司经营宗旨48二、 公司的目标、主要职责48三、 各部门职责及权限49四、 财务会计制度52第八章 技术方案59一、 企业技术研发分析59二、 项目技术工艺分析62三、 质量管理63四、 设备选型方案64主要设备购置一览表65第九章 原辅材
7、料供应、成品管理66一、 项目建设期原辅材料供应情况66二、 项目运营期原辅材料供应及质量管理66第十章 节能说明68一、 项目节能概述68二、 能源消费种类和数量分析69能耗分析一览表69三、 项目节能措施70四、 节能综合评价72第十一章 人力资源配置73一、 人力资源配置73劳动定员一览表73二、 员工技能培训73第十二章 项目投资分析76一、 编制说明76二、 建设投资76建筑工程投资一览表77主要设备购置一览表78建设投资估算表79三、 建设期利息80建设期利息估算表80固定资产投资估算表81四、 流动资金82流动资金估算表83五、 项目总投资84总投资及构成一览表84六、 资金筹措
8、与投资计划85项目投资计划与资金筹措一览表85第十三章 经济效益87一、 经济评价财务测算87营业收入、税金及附加和增值税估算表87综合总成本费用估算表88固定资产折旧费估算表89无形资产和其他资产摊销估算表90利润及利润分配表92二、 项目盈利能力分析92项目投资现金流量表94三、 偿债能力分析95借款还本付息计划表96第十四章 项目风险分析98一、 项目风险分析98二、 项目风险对策100第十五章 总结102第十六章 补充表格105主要经济指标一览表105建设投资估算表106建设期利息估算表107固定资产投资估算表108流动资金估算表109总投资及构成一览表110项目投资计划与资金筹措一览
9、表111营业收入、税金及附加和增值税估算表112综合总成本费用估算表112利润及利润分配表113项目投资现金流量表114借款还本付息计划表116第一章 行业、市场分析一、 笔记本电脑及平板电脑:市场规模平稳,技术难度更高笔记本电脑对电池热管理要求更高。据batteryuniversity,笔记本电脑电池一般由3组2个并联的电池串联组成,也可称为6芯(6颗电池),根据电池厚薄程度也分4芯和8芯,电芯越多,待机时间越长。对于笔记本电脑,即使连接到外部电源或线路电源,也只会在充电不足时为电池充电,以此减少充放电的循环次数,使电池寿命最大化。由于热量,笔记本电脑中的电池老化速度比其他应用更快。在使用过
10、程中,笔记本电脑的内部温度会上升到45C,使得电池在高温下工作时的预期寿命是更温和的20C或更低温度下运行的一半。笔记本电脑上BMS系统的关键功能之一是管理电池系统,确保其不会过充、过放、过热。据赛微微电招股书,目前一台笔记本电脑的电池管理芯片方案通常包括1颗电池安全芯片、1颗电池计量芯片、1颗充电管理芯片,一台笔记本电脑的芯片方案通常包括1到2颗限流开关芯片。平板电脑高性能、轻薄化趋势对电池管理芯片的综合性能提出更高要求。平板电脑的原理与与笔记本电脑的原理类似,电池管理芯片在平板电脑中起到电源管理、控制、转换、处理等功能。平板电脑存在高性能、轻薄化趋势,有限的体积限制了芯片的面积,对电池管理
11、芯片在有限面积内实现低功耗、高转换效率、高精度、大功率的综合性能提出了挑战。据赛微微电招股书,目前一台平板电脑的电池管理芯片方案通常包括1颗电池安全芯片、1颗电池计量芯片、1颗充电管理芯片。笔记本电脑和平板电脑出货量稳定,内臵及充电器配臵的电池管理芯片规模也预计保持平稳态势。笔记本和平板电脑作为消费电子设备的核心市场,历年设备出货量较平稳。据Frost&Sullivan统计,2020年受疫情影响,远程工作和学习的需求激增,全球笔记本电脑市场的规模在2020年达到新高,出货量达2.2亿台,由于新冠肺炎疫情的不确定性持续存在,预计未来几年全球笔记本电脑出货量将继续小幅增长,市场需求增速将在2023
12、年逐渐放缓。平板电脑市场也将维持小幅上升并逐渐饱和,据Frost&Sullivan统计,全球平板电脑市场规模受市场需求的影响,自2016到2019年出货量规模逐渐下降。受疫情影响,2020年平板电脑出货量有小幅上升,未来随着智能手机功能更加强大,全面屏、折叠屏等技术使智能手机替代平板电脑的趋势不断上升,全球平板电脑市场规模预计还将平稳下降,预计到2025年出货量约1.3亿台。二、 BMS是电池产业链的重要组成部分电池产业链涉及的基本概念。电池产业链涉及概念较多,如电芯、电池模组、电池包、pack工艺等。往往电池作为相关概念的统称,电芯、电池模组、电池包是电池制造过程中的不同阶段。电芯是电池的最
13、小单位,也是电能存储单元,它必须要有较高的能量密度,以尽可能多的存储电能。当多个电芯被同一个外壳框架封装在一起,通过统一的边界与外部进行联系时,就组成了一个电池模组。而当多个电池模组被电池管理系统(BMS)和热管理系统共同控制或管理起来后,这个统一的整体就叫做电池包。电池pack工艺,指的就是把电芯、电池模组等加工成最终电池包的工艺。电池pack一般也代指电池包。电池包主要由电芯、BMS、连接器、热管理组件、结构件等组成。电池产业链中,核心部分是电芯和BMS电路,电芯封装后再集成线束和PVC膜等构成电池模组,再加入线束连接器、BMS电路构成电池成品。其中,电池模组为电池包最小分组,由多个电芯串
14、联和并联,电芯数量越多,电池模组可靠性越弱,对电芯一致性的要求越高,因此需要通过单体电池监控管理装臵协调,即电池管理系统、热管理系统、电气系统等,最终组成完整的电池pack。在动力电池中,电池热管理系统通过风冷、水冷、液冷和其他相变材料降低电池放电过程中的热量释放,确保电池在适宜温度范围工作,主要由电池箱、传热介质、监测设备等构成。电气系统主要由高压线束、低压线束、继电器等构成,高压线束将动力电池系统的动力不断输送到各部件;低压线束实时传输检测信号、控制信号;继电器起自动调节、安全保护和转换电路等作用。电池pack技术主要受下游市场需求驱动而不断发展,主要应用场景包括笔记本、智能手机、等消费电
15、子电池,新能源汽车等动力电池。据头豹研究院,电池pack可按电芯正极材料、电芯配臵方式、壳体材料、电池用途、下游应有、电池形状等不同分类标准分为多个不同种类。其中,不同形状的电池pack具有不同特征,圆柱电池pack主要应用于数码产品,长时间的技术演进促使其拥有更优的良率和成本,但单体电池容量小导致电芯需要以量取胜,对BMS要求更高;方形电池结构复杂,但更易保护电芯;软包结构电池pack能量密度较高,但所使用的材料寿命较短。我国锂电池行业的不断发展推动电池pack行业的演化,中国电池pack行业相继经历笔电电池pack时代、手机数码电池pack时代、智能手机电池pack时代和动力电池pack兴
16、起,消费电池pack行业发展较为成熟,动力电池pack行业虽起步于2012年以后,但受益于下游汽车三化的发展,市场有望高速成长。第二章 项目建设背景、必要性一、 智能手表:功能多样化催生电池管理芯片需求进一步提升主流智能手表主要采用“蓝牙SoC+MCU+多个IC(电池管理、射频等)”多芯片解决方案,高续航能力对电池管理芯片提出高要求。智能手表拥有一套独立的嵌入式操作系统,有一个数据处理中心,需要调用各类传感器收集到的信息,还要有屏幕、存储器、电池管理系统、无线射频系统等,在内部芯片用料和结构设计上与智能手机较为相似,其中主控芯片是智能手表的核心器件,据我爱音频网,主控芯片在智能手表中成本占比达
17、30%左右。智能手表存在续航问题,而续航情况很大程度上取决于电池的能力。从智能手表功能受欢迎程度来看,智能手表的健康监测、通话、运动管理、GPS定位等功能有望保留并且在技术方面能够得到持续升级迭代。从智能手表的应用来看,智能手表作为独立移动终端的趋势不断加强,这对于智能手表的系统易用性、APP功能应用丰富、续航时间以及功耗等提出了更高要求,进而对电池管理芯片也提出更高要求。智能手表市场规模持续增加,有望推动智能手表BMS芯片市场规模不断发展。2013年,全球第一款智能手表GEAKWatch问世,几乎在同一时间,苹果、谷歌、三星等科技巨头入局智能手表市场。据我爱音频网,2021年智能手表出货量品
18、牌排行榜中,前9名分别为苹果、三星、华为、iMOO、Amazfit、Garmin、Fitbit、小米、Noise,手机厂商是当前智能手表市场的出货主力军。智能手表是智能穿戴的主要代表之一,在健康监测、记步、拨打电话、定位、与智能家居联动等功能的加持下,广受欢迎。其中,从苹果AppleWatch4开始,可穿戴设备市场开始从运动健康功能向专业的医疗领域转型,苹果AppleWatch4主打的心电图功能以及防跌倒功能的设臵也的确为智能穿戴设备市场提供了新的方向,智能手表BMS芯片市场规模有望持续增长。二、 智能手机性能迭代对BMIC要求不断提升,国产芯片加速替代快充技术可以大大降低充电时间,正成为智能
19、手机标配。据BatteryUniversity,根据充电时间及速度,充电方式可分为慢充、快充(rapid)、快充(fast)和超级快充。快充在电流、电压方面均大于慢充,对电池的伤害程度大于慢充,但由于手机电池的国际标准为在800次充放电过后,手机电池保持80%以上的性能即为合格,结合手机更换时间通常为2-3年,因此快充对手机通常不会对手机电池造成太大损耗。不同厂家纷纷推出快速充电技术,如VOOC闪充快速充电技术、高通QuickCharge2.0快速充电技术、联发科PumpExpressPlus快速充电技术等。实现快充需要满足三要素:充电器、电池、chargeIC。常规充电器的输出为5至10W,
20、快充最多可将其提高八倍,据电源网,iPhone11Pro和ProMax配备18W快速充电器,GalaxyNote10和Note10Plus标配25W充电器,三星出售超高速45W充电器。BMIC是手机快充所需大功率电池的核心器件。快充电池分为两个阶段:第一阶段是向低电量电池施加高电压,在10-30分钟内将电池充电到50%到70%,电池快速吸收电荷,不会对电池长期健康产生重大不利影响;第二阶段是将最后20%或30%的电池电量充满,所需时间与第一阶段相似,手机制造商将充电速度放慢防止损坏电池。电池管理系统密切监视这两个充电阶段,并在第二阶段降低充电速度,使电池有时间吸收电荷而避免出现问题,BMS芯片
21、是手机快充所需大功率电池的核心器件。智能手机机身轻便性与电池续航能力成两难选择,快充弥补手机续航难问题,电池管理芯片发挥重要作用。手机厂商提高电池容量需要扩大体积,此举会导致机身重量和尺寸的增加,厂商从用户体验和需求的视角出发,选择逐渐缩小电池容量。为弥补续航能力弱问题,厂商需要手机支持快充,并配合相应充电头和充电线。多数国产旗舰手机快充可达40W,远高于5-10W的普通充电器,大功率快充需匹配大功率充电头;相比普通充电线,安卓快充线内分为5根线工作(2根电源线,2根数据线,1根接地线),数据线负责充电头与手机电池管理芯片的通讯。5G手机渗透率提升,耗能更高,对BMS芯片提出更高要求。随着5G
22、手机全面普及,多摄渗透率加速、120Hz高刷屏、更多5G射频元器件及高性能CPU迭代,不断提升手机的高功耗。根据Canalys预测,2023年全球5G手机出货量将达到7.74亿部,占整个智能手机市场份额的51.4%;其中,中国作为全球5G网络建设的重点区域,将是全球最大的5G智能手机市场,出货量预计占全球市场的34%。据元宇宙通信数据,一般手机5G在网情况下比4G在网的能耗高出20%-30%,5G手机相较于4G手机最大的区别在于增设了5G射频与5G天线模块,超高5G网速体验建立在更复杂、功耗更大的天线与射频设计基础上,需要相应的电池电力驱动,此前被称为“大容量”的4000mAh已经不是不可逾越
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 咸宁 半导体 电池 管理 芯片 项目 投资 计划书 模板 范文
限制150内