2011年第十六届“华罗庚金杯”奥数总决赛试卷(小学组第1试).pdf
《2011年第十六届“华罗庚金杯”奥数总决赛试卷(小学组第1试).pdf》由会员分享,可在线阅读,更多相关《2011年第十六届“华罗庚金杯”奥数总决赛试卷(小学组第1试).pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、12011 年第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第 1 试)一、填空题(共 3 题,每题 10 分)1(10 分)计算:+2(10 分)如图所示,正方形 ABCD 的面积为 12,AEED,且 EF2FC,那么ABF 的面积是 3(10 分)某地区的气象记录表明,在一段时间内,全天下雨共 1 天;白天雨夜间晴或白天晴夜间雨共 9 天;6 个夜间和 7 个白天晴朗则这段时间有 天,其中全天晴有 天二、解答题(共 3 题,每题 10 分,写出解答过程)4(10 分)已知 a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且 a2+bc求所有满足
2、条件的(a,b,c)5(10 分)纸板上写着 100、200、400 三个自然数,再写上两个自然数,然后从这五个数中选出若干个(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到 k 个不同的非零自然数那么 k 最大是多少?6(10 分)将 1,2,3,4,5,6,7,8,9 填入如图的圆圈中,每个圆圈恰填一个数,满足下列条件:2(1)正三角形各边上的数之和相等;(2)正三角形各边上的数之平方和除以 3 的余数相等问:有多少种不同的填入方法?(注意,经过旋转和轴对称反射,排列一致的,视为同一种填法)32011 年第十六届“华罗庚金杯”少
3、年数学邀请赛总决赛试卷(小学组第 1 试)参考答案与试题解析一、填空题(共 3 题,每题 10 分)1(10 分)计算:+【分析】通过观察,可把每个分数拆成两个分数相减的形式,然后通过加减相互抵消,求得结果【解答】解:+1+1故答案为:2(10 分)如图所示,正方形 ABCD 的面积为 12,AEED,且 EF2FC,那么ABF 的面积是5【分析】连接 DF,易得 SABF+SDCFSABCD,根据 AEED 可得 SECDSABCD,根据4EF2FC 可得 SDFCSECD,进而求解【解答】解:连接 DF,易得 SABF+SDCFSABCD6,根据 AEED 可得 SECDSABCD3,根据
4、 EF2FC 可得 SDFCSECD1,则 SABF615;答:ABF 的面积是 5故答案为:53(10 分)某地区的气象记录表明,在一段时间内,全天下雨共 1 天;白天雨夜间晴或白天晴夜间雨共 9 天;6 个夜间和 7 个白天晴朗则这段时间有12天,其中全天晴有2天【分析】一天有白天和夜间两部分,下雨的有 9 部分,不下雨的有(6+7)即 13 部分,那么不是全天下雨的天数共有:(9+13)211(天);总天数为:11+112(天)而 11 天中,有一部分下雨的为 9 天,则全不下雨的天数为:1192(天)【解答】解:白天或夜间晴朗:6+713(个);不是全天下雨的天数共有:(9+13)21
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011 第十六 华罗庚 金杯 奥数总 决赛 试卷 小学
限制150内