超级电容工程项目数据分析与挖掘(工程项目管理).docx
《超级电容工程项目数据分析与挖掘(工程项目管理).docx》由会员分享,可在线阅读,更多相关《超级电容工程项目数据分析与挖掘(工程项目管理).docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域咨询/超级电容工程项目数据分析与挖掘超级电容工程项目数据分析与挖掘一、 大数据系统和数据挖掘技术(一)数据挖掘概述1大数据大数据是指超过既往数据库系统规模、传输速度和处理能力,或者既往数据库系统结构无法容纳的数据。大数据常以万亿或EB衡量,且种类多、实时性强,蕴藏的商业价值大。很多现有的新或旧的信息基础设施、工具和技术可用来开发和利用大数据中蕴藏的价值。大数据有各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章、买卖记录、网络日志、病历、事监控、视频和图像档案,及大型电子商务。大数据是数据挖掘产生与生存发展的土壤。如今数据每五年翻一番,面对前所未有的海量数据,为了从中发现有用
2、的信息必须进行数据挖掘。此外,计算机存储、处理大量数据,以及运算的能力大为增强,为数据挖掘创造了条件,使其成为一门独特的学科和技术。2数据挖掘与数据分析的区别数据挖掘与数据分析的主要区别在于:(1)处理工作量。数据分析的数据量可能并不大,而数据挖掘的数据量极大。(2)制约条件。数据分析是从某些假设出发,建立方程或模型,而数据挖掘不作假设,可以自动建立方程。(3)处理对象。数据分析往往是针对数字型数据,而数据挖掘对象类型繁多,例如图像、声音、文本等。(4)处理结果。数据分析可以解释结果的含义;数据挖掘的结果不易解释,着眼于预测未来,并提出决策建议。想要从数据中发现规律(即认知),往往需将数据分析
3、和数据挖掘结合起来。(二)数据挖掘步骤按挖掘对象,数据挖掘分为数据库与数据仓库挖掘和网络挖掘两种,各自步骤分述如下。1数据库与数据仓库挖掘数据挖掘一般有信息收集、数据集成、数据规约、数据清理、数据变换、数据挖掘、模式评估和知识表示8个步骤。(1)信息收集。从确定的挖掘对象中提取特征,然后选择合适的收集方法,将收集到的信息存入数据库。对于海量数据,必须选择合适的数据仓库。(2)数据集成。把来源、格式、特点、性质不同的数据按逻辑或物理属性加以编排,以便以后使用。(3)数据规约。多数数据挖掘算法耗时很长,商业数据往往较多,数据挖掘更耗时间。数据规约就是简化已有可用数据集的表示,规约后数量大减,但仍能
4、保持原数据的完整性,对规约数据的挖掘结果,与对规约前数据的挖掘结果相同或几乎相同。(4)数据清理。有些数据不完整(属性缺少属性值)、含噪声(属性值错误),不一致(同一信息有多种表示),需要清理,使其完整、正确、一致后存入数据仓库。(5)数据变换。将数据变换成适合数据挖掘的形式。实数型数据,可将其分层和离散化。(6)数据挖掘。根据数据格式、属性与特点,选择合适的处理工具,例如统计方法、事例推理、决策树、规则推理、模糊集,甚至神经网络,取得有用的信息。(7)模式评估。由行业专家核实数据挖掘结果是否合理、是否可用。(8)知识表示。将数据挖掘得到的信息以可视方式交给用户,或作为新的知识存人知识库,供其
5、他应用程序使用。并非所有的数据挖掘都要走上述的每一步。若只有一个数据源,则可以省略数据集成。数据规约、数据清理、数据变换合称数据预处理。数据挖掘至少60%的费用要花在信息收集阶段,而至少60%以上的精力和时间要花在数据预处理上。数据挖掘是一个反复多次的过程,若一次未满足要求或未得到有用结果,则需回到前面,经过调整后重新开始。2,网络挖掘网络挖掘可分为网络用户行为挖掘与网络信息挖掘。前者基本不在工程咨询人员关心之列。后者可理解为“从WWW中发现和分析有用的信息”。网络信息挖掘是在已知数据样本的基础上,通过归纳学习、机器学习、统计分析等发现挖掘对象间的内在关系与特性,进而在网络中提取用户感兴趣的信
6、息,获得更高层次的知识和规律。网络信息挖掘沿用了Robot,全文检索、人工智能的模式识别、神经网络等技术。现在的搜索引擎使用了这些技术,能够在网页或网站数据库中为用户搜寻有用信息。网络信息挖掘具体步骤如下:(1)确立目标样本。由用户选择目标文本,提取特征信息。(2)提取特征信息。根据目标样本的词频分布,从统计词典中提取挖掘目标的特征向量并计算出相应的权值。(3)网络信息获取。先利用搜索引擎站点选择待采集站点,再利用Robot程序采集静态Web页面,最后获取被访问站点网络数据库中的动态信息,生成WWW资源索引库。(4)信息特征匹配。提取索引库中的源信息特征向量,并与目标样本的特征向量对照,将符合
7、要求的信息交给用户。二、 时间数据分析方法(一)时间数据时间数据也称时间序列(Timeseries)或动态数据,是按时序排列的一组来自同一现象的观察值。时间序列可按日、月、季度、年等收集,有些呈现很强的季节性,建模时应给予反映。气象、水文、生态环境、经济及社会活动都能观察到周期性时间序列。实际观测并记录的时间序列,实际上是随机过程的样本,即,在产生时间序列的实际过程的每一时点上,人们看到的只是该时点随机变量的样本,并不能观察到母体。时间序列可分为平稳和非平稳序列,还可以分成线性和非线性时间序列。(二)时间序列分析1概述时间序列分析是根据随机过程理论,研究时间序列的统计规律。时间序列分析广泛应用
8、于信息压缩、利用卫星照片识别地球资源、石油勘探、经营管理、预测(气象、水文、地震、地下水位、农作物病虫灾害)、控制(环境污染、生态平衡)(天文学和海洋学)等方面。时间序列预测的基本依据是:(1)客观过程是连续的,有惯性,现在是过去的继续,过去的信息会传递到现在与未来,利用过去的数据或信息能推测未来。(2)偶然因素会影响到客观过程,使其行为与模式有随机性。预测要利用时间序列各时点随机量的相关关系。时间序列的趋势与波动称为“模式”,时间序列分析首要要识别其模式,然后用适当的曲线拟合。拟合模式的各种参数根据按“最优预测”原则估算出的时间序列数字特征(期望值、方差、协方差、自相关函数)等确定。2.时间
9、序列成分时间序列常含有4种成分:趋势、季节变动、规则波动和不规则波动。所谓趋势,是长期持续向上或持续向下的倾向。季节变动,是实际过程受气候、市场状况、节假日或风俗习惯等影响而呈现的周期性波动。规则波动,是周期不等的变动,呈涨落交替之状。波动的周期可能很长,但与趋势不同。不规则波动,是时间序列除去趋势、季节变动和周期波动之后的波动。不规则波动总是夹杂在时间序列中,致使时间序列产生一种波浪形或震荡式的变动。时间序列经常是各种周期成分的叠加,例如地震或人工地震波的记录。这样的序列要做频域分析。频域分析确定时间序列各周期成分称为“谱”或“功率谱”的能量分布形态。频域分析又称谱分析。谱分析的重要内容就是
10、通过序列的周期图()的极值点寻找各种分量的周期。3时间序列建模时间序列建模一般有如下几个步骤(1)取得时间序列样本。(2)将样本点画成图,进行相关分析。时间序列图形可显示出变化趋势和周期,并发现离群点和转折点。若离群点确实为观测值,建模时应加以考虑,若非,应加以调整。转折点指时间序列趋势突变的点。如果发现转折拐点,则在建模时须分段用不同的模型拟合时间序列,例如用门限回归模型。(3)模式识别与拟合。时间序列模式众多。小样本可用趋势模型、季节模型加上随机误差拟合。对于样本容量(即观测值个数)大于50的平稳时间序列,可用ARMA(自回归移动平均)模型拟合。非平稳时间序列可经差分化为平稳时间序列,再用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 超级 电容 工程项目 数据 分析 挖掘 管理
限制150内